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Abstract

Conventional camera designs usually shun sample irregularities and
lens aberrations. We demonstrate that such irregularities and aber-
rations, when properly applied, can improve the quality and us-
ability of light field cameras. Examples include spherical aberra-
tions for the mainlens, and misaligned sampling patterns for the mi-
crolens and photosensor elements. These observations are a natu-
ral consequence of a key difference between conventional and light
field cameras: optimizing for a single captured 2D image versus a
range of reprojected 2D images from a captured 4D light field. We
propose designs in mainlens aberrations and microlens/photosensor
sample patterns, and evaluate them through simulated measure-
ments and captured results with our hardware prototype.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Sampling

Keywords: light field, camera, sampling, imaging, noise, mis-
alignment, irregularity, aberration, computational photography

1 Introduction

Traditional cameras directly capture the final images. Computa-
tional cameras, in contrast, capture the original data from which the
final images are computed. Such original data often contains extra
information enabling flexibility and quality not possible with only
the final outputs. An example is light field cameras, capturing 4D
radiance data which can be processed to form 2D images with vary-
ing parameters such as view-points and focus distances [Ng 2006].

The extra powers of computational cameras also bring extra de-
sign challenges. For a light field camera, it is crucial to design
its 4D sample set formed by the 2D microlens and photosensor
arrays to project good 2D distributions under different focus dis-
tances. As visualized in Figure 1 top, existing light field camera
designs with regular alignment of microlens and photosensor arrays
can exhibit highly variable 2D distributions under different projec-
tions. This is undesirable, as images formed or captured from less
uniform 2D sample distributions can have far poorer quality than
those with more uniform distributions. Often, photographers have
to carefully setup the scene to ensure that all objects of interests fall
within ranges of good sample distributions.

The analysis and synthesis of spatial samples have been extensively
researched in computer graphics [Pharr and Humphreys 2004].
However, prior works predominantly focused on optimizing a sam-
ple set which will remain fixed in the application space, such as
rendering or displaying an image [Cook 1986; Heide et al. 2014],
reconstructing a surface [Öztireli et al. 2010], or animating a fluid
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Figure 1: Sampling design for light field cameras. Each row shows pro-
jected 2D image sample sets under different focus distances λ from a sin-
gle 4D light field sample set. λ = 0 and −1 maps to the samples on the
microlens and photosensor planes, respectively (see Figure 2). For bet-
ter imaging quality, projected 2D sample sets should have uniform spatial
coverage. From top to bottom: traditional regular alignment of hexagonal
microlens array and square photosensor array with highly non-uniform spa-
tial coverage across different focus distances λ, blue noise distributions for
microlens and photosensor arrays with improved coverage at λ away from
0, misalignment of hex-microlens/square-sensor by rotation and pitch size
mismatch for similarly improved coverage, further adding spherical aber-
ration to the mainlens for improving coverage even at λ near 0.

sequence [Schechter and Bridson 2012]. Computing a sample set to
be reused under various settings in a different space with unknown
input content (e.g., one 4D light field→ multiple 2D images) is a
more challenging and less studied problem.

We present designs and methods to construct 4D light field sample
sets that can produce more uniform 2D distributions under different
projections. Our main observation is that regular sampling (Fig-
ure 1, top), as in traditional cameras, can have samples clustered at
certain focus distances, causing non-uniform spatial coverage. To
avoid such issues, our key idea is to introduce sample irregularities
(Figure 1, middle) and lens aberrations (Figure 1, bottom) into light
field camera design. Our results indicate that simple designs, such
as misalignments of the microlens and sensor arrays and spherical
aberrations for the mainlens, are practical to implement and can ef-
fectively improve the quality and usability of light field cameras.
Moreover, we apply this principle to design simpler and less expen-
sive lens with higher performance.

To quantify the design objectives and evaluate the design variations,
we present a mathematical formulation to measure the projected
spatial coverage under different focus distances of given 4D light
field sample sets. We analyze various design choices, and present
methods to synthesize desired misalignments and aberrations. We
have built a prototype camera to evaluate our design with various
captured scenes.

In sum, the contributions of this paper include:



• The ideas and insights of using mainlens aberrations and
microlens/photosensor sample irregularities to enhance light
field camera design;

• A new mathematical formulation to measure the projected
spatial coverage of a given 4D light field sample set with ad-
justable local sensitivity;

• Simple and yet effective methods to construct desired 4D light
field sample sets based on misalignments and aberrations;

• Analysis of various designs and the insights obtained via sim-
ulated and captured results with a built hardware prototype.

2 Previous Work

Light field The foundation works on light field analysis formal-
ize the relationships between the scene, the imaging system, and
the Fourier spectrum [Levoy and Hanrahan 1996; Gortler et al.
1996; Chai et al. 2000; Isaksen et al. 2000; Ng 2005; Liang and
Ramamoorthi 2015]. These concepts have been widely applied to
the designs of imaging systems and reconstruction algorithms.

In contrast to the existing works focusing on prefiltering or recon-
struction, we are primarily interested in the sampling scheme of
light field cameras. While prior works have noticed that the sam-
pling scheme would affect the reconstruction quality [Bishop and
Favaro 2012; Yu et al. 2012; Broxton et al. 2013; Liang and Ra-
mamoorthi 2015], they did not perform rigorous analysis or im-
prove it as we do. Our work also differs from defocus aliasing re-
duction in rendering [Lehtinen et al. 2011] as we deal with aliasing
in the in-focus regions of arbitrary depths.

Lens design The design for the photographic lens system is a
longstanding and difficult problem [Johnson 1992]. Imperfection
in the lens system, dubbed aberration, is inevitable [Sasián 2012].
To compensate for aberration, a modern lens design usually con-
sists of tens of glass elements of various materials, and relies on so-
phisticated algorithms to optimize their surface profiles [Kingslake
and Johnson 2009]. The iterative design procedure is usually time-
consuming, and the outcome can be bulky and expensive.

Several works in computational photography attempt to digitally
correct aberration after capture and thus lower the demand for lens
quality [Ng 2006; Schuler et al. 2011; Shih et al. 2012; Heide et al.
2013]. To compensate for lens aberrations in human visual sys-
tems, pre-distorting the content can reduce the need for surgery or
corrective glasses [Huang et al. 2014].

Lens aberration has been considered undesirable in camera lens
design and visual lens correction. However, lens design for light
field cameras is vastly different and remains largely unexplored.
Recently, Cohen et al. [2014] improved light field microscopy by
adding wavefront coding [Dowski and Johnson 1999] into a high
performance lens system. We demonstrate that aberration can ben-
efit light field imaging for better quality and simpler lens system.

Sampling Sampling has been extensively studied in computer
graphics. Even though different applications can favor different
sampling methods, it is often desirable for the sample distributions
to be irregular and yet well-spaced to reduce both aliasing and vari-
ance. Popular methods include blue noise [Heck et al. 2013] and
low discrepancy sampling [Keller et al. 2012]. Such irregular and
yet well-spaced distributions have also shown to benefit imaging
applications such as super-resolution [Ben-Ezra et al. 2007; Sasao
et al. 2013], color filter design [Wei 2010], and reducing resource
consumption [Schoberl et al. 2011].

Most prior sampling methods are designed for fixed usage − a sin-
gle pattern remaining the same throughout a given application, or
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Figure 2: Illustration of a microlens-based light field camera.

are content dependent such as [Lessig et al. 2014]. Light field cam-
eras face the extra challenge of having a single 4D sampling pattern
to be reused under different 2D projections with arbitrary unknown
input content. We have discovered that irregular/misaligned and yet
well-spaced distributions can produce more uniform spatial cover-
age for light field sampling, in addition to the traditional benefits of
reducing aliasing and variance.

3 Background

Here, we review the basics of microlens-based light field cameras
and refocus image reconstruction, and the impact of lens aberration.

3.1 Sampling

We illustrate the optical system for a microlens-based light field
camera in Figure 2. The system consists of three main components:
the mainlens, the microlens array (MLA), and the photosensor ar-
ray. Let F denote the distance between the mainlens and MLA, and
fm the focal length of the microlens, same as the distance between
the MLA and the photosensor array. A photosensor at u′ is associ-
ated with the nearest microlens element centered at s. It integrates
light rays passing through the mainlens aperture at ua and stores
the integral as a light field sample L(s, ua), of which the shape of
the integral defines the pre-filter kernel.

We can also represent the light field via the local coordinate de-
fined by the MLA and the photosensor. For the photosensor at u′

under the microlens at s, we define the local angular coordinate u
as its distance to the intersection of photosensor and the ray (red in
Figure 2) passing through the main lens and microlens centers:

u = u′ − sF + fm
F

≈ u′ − s, (1)

where the approximation holds because F � fm. If the image
plane is λfm away from the MLA, from similar triangles we have

x = s− λfm
u′ − s
fm

≈ s− λu. (2)

Note λ is negative when the scene is focused beyond the MLA. We
will use the local coordinate in the paper.

The derivations above also apply to the 3D space, where the mi-
crolens coordinate is [s, t], the local angular coordinate is [u, v],
the reprojected image coordinate is [x, y], and the light field is a
4D function. In a light field camera, both the microlens and sensor
arrays are made of discrete cells and together form a 4D sample set
P = {pi|i = 1, ...,K} with each pi = [si, ti, ui, vi]. We can
shear-project pi to its 2D image coordinate qi = [xi, yi] at depth
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Figure 3: Sampling and reconstruction from a real camera [Lytro Inc.
2011]. Shown within each group are the projected sample positions and
reconstructed image at specific focus distance λ. The target scene is the
ISO-12233 chart with only the central crop shown. The spatial samples
have circular footprints at |λ| = 1 to reflect the real camera lens aperture,
which is not considered elsewhere in the paper for clarity and generality.

λ via Equation (2):

xi = si − λui = (1 + λ)si − λu′i,
yi = ti − λvi = (1 + λ)ti − λv′i.

(3)

Note that the projection process is depth-dependent, thus the dis-
tributions of projected sample set P2,λ = {qi} vary with λ, as
exemplified in Figure 1. P2,λ determines how scene content at λ
is captured or formed, with more uniform distributions of samples
supporting improved reconstruction quality.

3.2 Reconstruction

For light field cameras, the output 2D images are reconstructed
from the captured 4D light field samples. Here we review the pro-
jection method, which is simple to implement, highly effective, and
widely adopted [Kitamura et al. 2004; Georgiev et al. 2011; Yu
et al. 2012; Venkataraman et al. 2013; Fiss et al. 2014].

Given these projected samples from Equation (3), the projection
method reconstructs the 2D image I(q) by simple filtering:

I(q) =

∑K
i=1 k(q,qi)L(pi)∑K

i=1 k(q,qi)
, (4)

where k is the reconstruction kernel function.

Figure 3 demonstrates sampling and reconstruction from a commer-
cial light field camera. We optically focus the scene at each specific
λ to obtain maximal possible resolution without digital defocus. It
can be observed that:

1. The overall sharpness and contrast gradually decrease with
increasing |λ| due to pre-filtering.

2. Strong aliasing is visible when the projected samples are clus-
tered and non-uniform, such as at λ = 0, −13, and 10.

3. When |λ| is small (< 10), the resolvable resolution can be
much higher than the microlens resolution (379 × 330). For
example, one can clearly read 600 lines per image height
[Imatest 2014] at λ = ±2. The true resolution limit is depth
dependent, i.e. the projected sample density and the pre-filter
kernel at specific λ [Liang and Ramamoorthi 2015].
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Figure 4: Why lens aberration can help light field camera design. (a)
and (b) show captured content by real light field cameras, without and with
spherical aberration. (c) and (d) show the s-u slices of (a) and (b). (e)
shows the s-u slice of (b) after aberration correction. The circles in (c-e)
represent a subset of the discrete samples. (f) illustrates sample distributions
projected from (c) and (e), with less and more uniformity respectively.

Resolution We choose the reprojection resolution to be 4 × 4
the microlens resolution. This is usually larger than the pre-filter
bandwidth [Liang and Ramamoorthi 2015] and thus ensures that
any aliasing is due to projected sample distribution instead of in-
sufficient pre-filtering.

3.3 Optical Aberration

In geometric paraxial optics, rays emitting from a point towards a
perfect thin-lens would converge to a point, and the in-focus image
of an object would be scaled but otherwise undistorted. However,
this is not the case for real optical systems, and departure of the
system performance from the perfect model is collectively called
aberration [Sasián 2012]. The aberration leads to undesirable image
distortion or degradation, including magnification, defocus, spher-
ical, astigmatism, field curvature, distortion, coma, etc. (Note that
aberration does not include the wave optics effects like diffraction
or interference.)

Ng [2006] showed that optical aberration acts as a non-linear warp-
ing of light fields. We illustrate this in Figure 4. A resolution chart,
as in Figure 3, is placed at λ = 0. In a camera without aberration,
samples under each microlens are near constant as they all represent
the same point on the chart (Figure 4(a)). This is obvious in the s-u
slice of the light field (Figure 4(c)), where samples of the same s
come from the same microlens, and all store identical values. When
we perform the projection process, all samples collide to the same
output coordinate (Figure 4(f) top). On the contrary, when the lens
has strong aberration, we can see intricate structure within each mi-
crolens (Figure 4(b)). In the s-u slice, the vertical structure in the
aberration-free light field becomes curved (Figure 4(d)). Each sam-
ple under a microlens senses different locations of the scene. We
can un-warp the light field to correct the aberration (Figure 4(e)).
Un-warping the signal is equivalent to warping the sample grid, and
the projection of warped sample grid is more uniform (Figure 4(f)
bottom).

The real lens consists of many different kinds of aberrations. For
example, spherical aberration maps a 4D coordinate pd in the
aberration-distorted to the aberration-free light field coordinate:

[s, t, u, v] = [sd + εs(pd), td + εt(pd), ud, vd], (5)

[εs(p), εt(p)] = 4wSP(2r)
−3(u2 + v2)[u, v], (6)

where [εs(p), εt(p)] is a third-degree polynomial of [u, v], r =
Rfm/F is the image radius of the aperture under a microlens, and
wSP controls the amount of spherical aberration. The mapping for
other aberrations can be derived in a similar way [Sasián 2012].



For a fixed MLA and photosensor configuration, we can still adjust
the sample distribution by controlling the amount of aberration. We
will show that this unexplored property is very effective in improv-
ing the sampling scheme.

3.4 Summary

In light field photography, there are three factors affecting the ren-
dering quality: prefiltering, sampling scheme, and reconstruction
algorithm. Existing works have focused on prefiltering and recon-
struction, and little attention has been paid to analyze the sampling
scheme, let alone to improve it (Section 2). This will be the focus
of this work. The improvement of the sampling scheme for the light
field camera can be largely independent and complementary to the
prefiltering and reconstruction process.

4 Objectives

We measure the quality of a given 4D light field sample set through
its 2D projections, for which several main objectives exist in the
literature: spatial coverage, spectral property, and imaging qual-
ity. We can directly apply prior methods for the latter two, such
as Fourier [Lagae and Dutré 2008; Schlömer and Deussen 2011]
or DDA [Wei and Wang 2011] spectrum for projected 2D sets and
visual observation of 2D reconstructions.

For spatial coverage various measures exist, such as discrepancy
[Shirley 1991; Keller et al. 2012], relative minimal pair-wise sam-
ple spacing ρ [Lagae and Dutré 2008], and β = rc

rf
− the ratio of

maximal coverage radius to minimal conflict radius [Ebeida et al.
2014]. These measures have the virtue of brevity, often represent-
ing spatial uniformity of an entire sample set via a single number,
but at the expense of sensitivity: the movement of a single sample
might cause dramatic changes. At the other extreme, histograms of
sample location differentials [Wei and Wang 2011] have low sen-
sitivity and thus robust against individual sample movements, but
lack brevity and only indirectly measure spatial coverage. We pro-
pose a 2D spatial coverage measure that can be tuned for sensitivity,
and further extend it for 4D samples.

4.1 Image Plane Coverage

We measure the spatial coverage of a given 2D sample set Q via
the following energy function:

E(Q,V) =

 |Q|∑
i=1

E(qi, Vi)

 1
γ

, (7)

E(qi, Vi) =

∫
p∈Vi

|p− qi|γ dp, (8)

where V is the Voronoi tessellation generated from Q, Vi is the
Voronoi region corresponding to sample qi ∈Q, and p is a point in
the domain Ω. The power γ ≥ 0 is a tunable parameter for relative
weighting of different |p− qi| lengths. Specifically, if γ =∞, the
above equation will be measuring the worst case, reducing to the
definition of rc in [Ebeida et al. 2014]:

E(Q,V) ≡ max
i

max
p∈Vi

|p− qi| . (9)

If γ = 2, we have the traditional CVT (centroidal Voronoi tessella-
tion) formulation:

E2(Q,V) ≡
∑
i

∫
p∈Vi

|p− qi|2 dp (10)
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Figure 5: Measurement of Equation (7) with different γ values. (a) con-
tains 300 samples initialized as white noise undergoing Lloyd relaxation.
(b) contains 2500 samples with different amounts of Gaussian jittering η
from an initial triangular tiling (with hexagonal Voronoi regions).

Figure 5a provides experimental measures of Equation (7) over a
sample set undergoing Lloyd relaxation starting from a white noise.
As shown, larger γ values cause more fluctuation, reflecting the
higher sensitive to the worst cases than smaller γ values. Figure 5b
repeats similar measurements over a regular triangular tiling, which
provides optimal coverage for 2D, with different amounts of Gaus-
sian jittering η of sample locations. As expected, Equation (7) ' 1
for η = 0 regardless of γ and gradually increases with η. Larger γ
grows more rapidly due to higher sensitivity.

For the rest of the paper we focus on γ = ∞ and 2, because they
provide the upper and lower bounds for other γ values.

4.2 Light Field Coverage

For light field photography, we are interested in the quality of the
2D projections of a 4D sample set P for all λ in a given range Λ
(e.g., [−20, 20] in the Lytro camera for typical usage). This can be
measured via the following energy function:

C(P,Λ) =

(∫
λ∈Λ

wλ ·Eγ(P2,λ,Vλ)dλ

) 1
γ

, (11)

where E is from Equation (7), P2,λ the 2D projection at λ of P ,
Vλ is the Voronoi tessellation generated from P2,λ, and wλ is for
weighing each λ. In particular, each wλ consists of two terms, βλ
for pre-filtering and νλ for normalization:

wλ = βλνλ. (12)

Prefilter β Due to the finite spatial-angular support, each sensor
element collects a bundle of rays, effectively filters the light
field signal before sampling. Therefore, we should down-
weight the coverage measurement when the prefilter is the
dominant limiting factor.

The prefilter kernel depends on the system configuration and
is depth-dependent [Bishop and Favaro 2012; Perwaß and Wi-
etzke 2012; Liang and Ramamoorthi 2015]. For instance, in
our measurement of the Lytro camera, the filter width is pro-
portional to 1 + K |λ|, where K is a constant value (' 0.1).
We thus can define βλ as:

βλ =

(
1

1 +K |λ|

)γ
. (13)

Normalization ν Since each λ projected 2D regions can have dif-
ferent size/shape (or conversely, different number of samples
if measured under a fixed 2D window), we set each νλ to be
the inverse of the ideal/minimal value computed by triangular
tiling of the same region size/shape and sample count:

νλ =

(
1

Emin(P2,λ,Vλ)

)γ
. (14)



Photosensor Microlens Mainlens
tiling square tiling hexagonal f-number 2.0
pitch size 1.4µm pitch width 14µm wSP < 3µm

resolution 32802 focal length 25µm

Table 1: The reference camera parameters.
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Figure 6: Projected point sets from different camera designs. Shown
here are combinations of microlens and sensor arrays (regular, misaligned,
noise), spherical mainlens aberration (wSP = 0, 35µm), and focus distance
λ. With our formulation in Section 3, the microlens/sensor pattern is mani-
fested at λ = 0/λ = −1.

5 Designs

Reference design As a reference camera design, we use the pa-
rameters listed under Table 1. The design reflects current consumer
level cameras (e.g., [Lytro Inc. 2011]): hexagonal microlens ar-
ray, square sensor array, and well-aligned relative pitch sizes (e.g.,
10:1). The mainlens was designed to have minimal aberrations.
Note that sensor resolution and f-number are agnostic w.r.t. sam-
pling patterns but listed for completeness.

The top row of Figure 6 visualizes the projected point sets of this
reference design under different focus distance λ values. We can
see that the point set patterns can vary significantly even at nearby λ
values, and exhibit complex patterns. The spatial coverage is worst
at λ = 0 when all sensor samples under the same microlens con-
gregate into a single point, and best at λ = −1 which corresponds
to the sensor distribution.

To improve upon this reference design, we explore alternative de-
signs with different microlens/sensor sample patterns and mainlens
aberrations.

Microlens and sensor sampling The main problem with the
reference design is the regular, well-aligned sample patterns in
microlens and sensor arrays, which can cause significant over-
lapped/clustered samples under light field projections. The main

goal of our alternative designs is to break such regular alignments:

Noise Blue noise is known for the unstructured and well-spaced
spatial distributions. These properties can help reduce both
aliasing and variance in traditional sampling applications. We
have found the unstructured-ness can further help avoid over-
laps or clusters of regular patterns under light field projec-
tions. Conceptually, we can replace either or both the mi-
crolens and sensor array with a blue noise distribution under
similar density. But in practice, such noise patterns might not
be suitable for manufacturing.

Misalignment We can keep the original regular sampling of ref-
erence design, but misalign the microlens and sensor arrays
via rotation and non-integral relative pitch size ratios. Such
misalignment reduces regular overlaps and clusters and yet
maintains engineering feasibility.

Figure 6 visualizes the spatial distributions of these alternative de-
signs. Blue noise can help improve spatial coverage of light field
projection by spreading samples away from overlapping regular
patterns of the original regular design, e.g., at λ = ±5 and ±2.5.
However, blue noise can also degrade spatial coverage near λ = 1
as compared to regular hexagonal sampling for the microlens array.
For misalignment, we set rotation to be 18◦ and relative microlens-
to-sensor pitch ratio to about 9.53 (instead of 0◦ rotation and rel-
ative pitch ratio 10 in the reference design). Such simple changes
can provide significant improvements in light field coverage; no-
tice the better spatial distributions than both the reference and noise
designs.

However, distributions projected around λ = 0 remain clustered.
We address this via mainlens aberration.

Mainlens aberration Mainlens aberration is an orthogonal de-
sign option w.r.t. microlens and sensor element distributions. Fig-
ure 6 visualizes the aberration results corresponding to various
microlens ⊗ sensor sample designs. As shown, aberration can
help spread out samples to provide better spatial coverage around
|λ| < 1, including the worst case λ = 0 which cannot be improved
by just changing the microlens and sensor patterns.

6 Methods

Here we describe more detailed analysis and synthesis methods for
microlens/sensor sampling and mainlens aberration.

6.1 Microlens and Sensor Sampling

We use a grid-accelerated dart throwing method [Wei and Wang
2011] to generate blue noise distributions. Our analysis via 4D re-
laxation indicates that blue noises can provide near-optimal cover-
age. More details are in the supplementary materials.

Misalignment has been exploited for Moiré image creation [Hersch
and Chosson 2004] and super-resolution [Oberdoerster et al. 2014].
We investigate misalignments of regular microlens and sensor sam-
pling to improve light field coverage.

Setup We maintain the reference design with hexagonal mi-
crolens ⊗ square sensor array, as this pairing already provides ad-
ditional misalignment compared to using the same patterns − hex
⊗ hex or square ⊗ square.

We consider the following parameters: (1) rotation angle between
microlens and sensor planes, and (2) the ratio of microlens to sensor
pitch sizes. We do not consider adjusting aspect ratio of individual
microlens/sensor elements and keep it isotropic. While such ad-
justment is feasible in the multi-array system [Oberdoerster et al.
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Figure 7: 4D coverage measures via Table 1 under different rotations
and pitch ratios. Shown in the sub-labels are (relative) microlens-pitch ⊗
sensor-pitch and alignment periodicity in the units of microlens-pitch Ts.
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Figure 8: Coverage plots under different pitch ratios with fixed rotation
angle. Each curve is computed via Equation (7). Each C is computed via
Equation (11) with K = 0 and 0.1, thus the two values for γ = 2. C for
γ =∞ is invariant to β and has one value.

2014], it is less practical to build a single microlens or sensor array
with spatially-varying anisotropy.

Parameters The rotation angle should be within [0, 30] degrees
due to rotational symmetry. Relative pitch sizes should be as close
to the original ratio as possible (to maintain the original design ra-
tionale) and yet have as much misalignment as possible. The latter
can be measured by Ts, the periodicity (in the units of microlens
pitch) for the microlens and sensor element alignment. For exam-
ple, Ts = 1 for (relative) microlens/sensor pitch pair (14, 1.4) due
to perfect alignment, and Ts = 2099 for (13.3, 1.4693) since it
takes 2099 microlens elements to repeat the per-microlens sensor
patterns. Ts can be computed as follows: promote both microlens
and sensor pitches to integers (i.e. right shift the decimal point by
multiplying by 10), compute their least common multiplier, and di-
vide by the (promoted) microlens pitch size.

Results We compute various microlens/sensor pitch ratios
around the reference values in Table 1 with ±5% variations and
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Figure 9: Coverage measurement Equation (11) for different amounts of
spherical aberration. The cliff drops in (a) are around wSP = −16 and 22.

select a representative set of various Ts values.

Figure 7 measures the light field coverage Equation (11) under dif-
ferent rotations and relative pitch sizes. Notice a common trough
around rotation θ = 18◦. In Figure 8, we further expand around this
angle by plotting the image coverage values. Notice the much flatter
curves compared to the original reference design without misalign-
ment in Figure 11a, and flatter curves for larger Ts. With respect
to the reference design of microlens/sensor pitch pair (14, 1.4), we
recommend (13.3, 1.3405) at θ = 18◦ due to similar pitch ratios
and improved coverage.

6.2 Mainlens Aberration

Here we describe why we pick spherical aberration among other
types, how to optimize its parameter, and the lens design process.

Type We would like to avoid spatially-varying or high-order aber-
rations as these would require more complicated analysis/synthesis
across the whole sensor [Sasián 2012]. This leaves us only defo-
cus, spherical, and wavefront coding [Dowski and Johnson 1999].
Since the defocus is parameter-free (and thus cannot be optimized)
and wavefront coding requires cubic plates, this leaves us only the
spherical aberration. Fortunately, it provides enough degrees of
freedom to optimize the sample coverage. It is also simple to ana-
lyze and practical for lens manufacturing.

Parameter As shown in Equation (6), spherical aberration has
only one free parameter wSP, which depends on the mainlens op-
tical properties. Intuitively, for the reference hex ⊗ square cam-
era design, since the worst case distributions happens at λ = 0,
wSP needs to be at least large enough so that all sensor samples
corresponding to the same microlens cluster would spread out to
touch/overlap one another. That is, |wSP|/2 ≥ r according to Equa-
tion (6). This translates to |wSP| = 12.5µm for the reference design
whose r = 6.25µm as in Table 1. However, due to the complicated
projection patterns caused by the regular microlens and sensor sam-
pling, the worst case can happen away from λ = 0 for |wSP| > 0.
Our experiments indicate that |wSP| > 3r would be enough, and
larger amounts of aberrations can cause unnecessary pre-filtering
artifacts. Figure 9 provides coverage measurements across differ-
ent sample designs and amounts of spherical aberration.

Lens design flow We start the design by picking a basic lens
system and use Zemax [Zem 2014] for optimization. We set the
optimal spherical aberration parameter as a hard constraint. In con-
trast, the typical objective function in the traditional lens design is
to minimize all possible aberrations.

The real lens has other aberrations or distortions such as field-
curvature, barrel distortion, coma, etc. Unlike spherical aberration,
those distortions are usually spatially-varying and may affect the
sample distributions. To address this, at the end of each design itera-
tion, we measure the coverage values at many different locations on
the photosensor to ensure consistency. Finally, for color imaging,
the optimization is performed for a number of visible wavelengths.
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Figure 10: Photo of the prototype camera.

Mainlens
f-number 1.4 wSP −290µm

Photosensor Microlens
tiling square tiling hexagonal
pitch size 1.4µm pitch width 20µm

resolution 7728 × 5368 focal length 28µm

Table 2: Prototype camera parameters.

7 Implementation

7.1 Prototype

We design the lens based on the flow described above. Because
we allow much larger aberrations, the basic lens system consists
of only five lens elements, with all surfaces being spherical. The
degree of freedom in this system is 20: ten radii, nine inter-surface
distances, and one distance from the last surface to the photosensor.
In contrast, a high-quality photographic lens requires more degrees
of freedom, by using more lens elements and aspheric (polynomial)
surfaces to minimize aberrations.

Because we loosen the demand of minimizing aberrations, we can
aim for higher performance in other aspects. For better light ef-
ficiency, we minimize the f-number (i.e., maximize the aperture)
while keeping the form factor small. Finally, to study the impact
of prefilter to the refocused images, we make the target spherical
aberration larger than necessary.

We manufacture the designed lens and construct a light field camera
with parameters listed in Table 2. The f-number of the lens is 1.4.
Its total length, from the front surface to the photosensor, is only
3.3-cm thanks to the small number of lens components. For better
ability to correct the aberration and larger refocusable range [Ng
2006], we use larger microlens elements than those in the reference
camera (Table 1) to cover more photosensor samples. We also set
microlens pitch size for misalignment as suggested in Section 6.1
(Ts = 7) for further coverage improvement. The lens module is in-
tegrated into a portable device including battery, storage, and LCD
viewfinder, as shown in Figure 10.

7.2 Calibration

The addition of irregularity and aberration only marginally in-
creased the complexity for calibration. This is because we control
the whole design spec and manufacture process, and thus only have
to estimate the deviation from the known design parameters instead
of treating all parameters as unknown, which is common for proto-
types built from off-the-shelf materials. More details are as follows.

Misalignment Aligning a MLA toward a specific rotation angle
is not different to or more difficult than a zero-degree rotation. Both
the rotation angle and translation amount can be accurately esti-
mated by recent methods such as [Dansereau et al. 2013; Cho et al.
2013; Bok et al. 2014]. Among all prototypes we have built, the
manufacture error in rotation is below 0.3 degree, with little effect
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Figure 11: Measurement of coverage values via Equation (7) (curves) and
Equation (11) (legends) for different camera designs in Figure 6.

on the coverage scores (Figure 7). The calibration error is orders
of magnitude smaller than the manufacture error, as measured by
variance in repetitive analysis.

Aberration Manufacturing and calibrating for lens aberration
turned out to be very simple, and is an advantage of our use of
only spherical lens which can be easily built at high precision. The
per-unit variation to the design spec is negligible. The only cali-
bration required is finding the intersection of the optical axis to the
sensor array, and globally translating the spatial coordinate during
the aberration correction. This calibration step is typical even in
conventional cameras for vignette compensation.

8 Evaluation

Here we evaluate our designs via various measures, including spa-
tial coverage as well as captured and synthetic imaging.

Coverage Figure 11 measures the coverage values correspond-
ing to the sample distributions in Figure 6 for both individual 2D
projections via Equation (7) and aggregate 4D measures via Equa-
tion (11). As shown, the coverage measures correlate well with the
spatial distributions in Figure 6: lower coverage energy corresponds
to better spatial uniformity. Regular sampling produces the highest
energy values with peaks at λ with aligned overlaps (see also Fig-
ure 3). Noises and misalignment can help reduce these overlaps but
not at λ = 0, with sensor samples congregated at microlens sam-
ples. Mainlens aberration can reduce the energy even at λ = 0,
producing uniformly low values (and thus good coverage) across
the entire Λ range.

Synthetic Images Figure 12 demonstrates synthetic imaging re-
sults for Figure 6 via the zone-plate function, a common test image
which consists of different frequencies and orientations. We focus
the synthetic image onto the focal plane at each λ to obtain the max-
imal possible resolution. The output image resolution is chosen so
that roughly one sample maps to one pixel. We use Gaussian kernel
splatting without further lens pre-filtering as the zone-plate already
contains different frequencies and orientations. As observed from
Figure 12:

• More uniform distributions, usually happen at larger |λ| or
wSP, produce sharper images.

• Irregular distributions reduce aliasing, for both microlens and
sensor distributions. The effect is more pronounced with less
wSP.

• Misalignment can produce sharper and less aliased images
than the reference design, but the effectiveness in anti-aliasing
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Figure 12: Zone-plate imaging for projected sample sets in Figure 6. The
zone-plate function 0.5 (1 + cos (2π(x2 + y2)/T2)) is focused onto the in-
dividual λ planes, with T chosen to be 1/16 of the projected domain size.
The image resolution is 2502, chosen so that roughly one sample maps to
one pixel.

(a) ideal lens (b) our design

Figure 13: Refocus images at λ = 0 from the simulated light fields with
ideal, aberration-free, thin lens (a) and our design lens (b). The bottom
row shows zoom-in regions of the top row. Notice the reduced aliasing of
(b) compared to (a). The scene is part of the San Miguel dataset [McGuire
2011].

is not as good as noises.

• Spherical aberration can greatly reduce aliasing and enhance
imaging resolution especially for small |λ| values.

To verify the lens designs, we use ray tracing to simulate the im-
age formation process inside the light field cameras. The refocus
results, as shown in Figure 13, demonstrate reduced aliasing by our
method.

(a) wSP < 3µm (b) zoom-in of (a)

(c) wSP = −290µm (d) zoom-in of (c)

Figure 14: Real captured images of ISO 11223 chart under different cam-
era configurations. (a) and (c) are the refocus results around λ ' 0 from the
first generation Lytro camera [2011] and our prototype camera (Table 2),
respectively. Notice the much reduced aliasing artifacts in (c) compared to
(a). The microlens resolutions of these two devices are around 3282 and
3762, and the images are rendered at 4× 4 microlens resolution.

Captured Images Figure 14 shows images of the ISO 12233
chart captured from light field cameras with different amounts of
spherical aberrations. We can see that compared to the Lytro cam-
era, our prototype greatly reduces aliasing, as predicted by our anal-
ysis. Because the spherical aberration is intentionally large for
experimental purposes, the prefilter of each sample is larger than
that in the Lytro camera. This causes slight loss in contrast in Fig-
ure 14c, even though the image resolution is still much higher than
the microlens resolution (3762). This loss can be easily compen-
sated by reducing spherical aberration. With these observations,
we believe adding aberration is a practical method to improve light
field camera design, when the amount is carefully controlled.

Figure 16 shows a variety of natural scenes with different character-
istics. Each case is depicted with an all-in-focus image. Please see
Figure 15 and the accompany video for focal sweeps, and the sup-
plementary materials for processing details. Figure 16a is a wall
poster captured in perspective with smooth depth variations; the
patterns can be highly aliased when captured under non-uniform
sample distributions, such as at λ = −15 and 0. Figure 16b is a
tree trunk with depth discontinuity; Figure 16c contains highly de-
tailed hair structures with varying depth; and Figure 16d is a bumpy
wall (detailed texture) with a sign (depth continuity) captured un-
der perspective (depth variations). All these are potential sources of
aliasing which are clearly visible in the Lytro results. Figure 16e is
a street scene in which most objects are captured with focus at infin-
ity. Even though the two cameras have different configurations due
to manufacturing constraints, our prototype clearly demonstrates
better and more consistent quality across these different situations.

In addition to improved quality, our prototype is also easier to use.
With traditional design, photographers have to position the cameras
carefully to prevent subjects from falling at depths with bad sample
distributions. Our prototype, with uniform distributions, can allevi-
ate this burden and facilitate more focus on artistic composition.

9 Conclusions

Sampling pattern is an important component of light field camera
design, and faces the unique challenge that a given light field sam-



ne
ar

fo
cu

s
m

id
dl

e
fo

cu
s

fa
rf

oc
us

Figure 15: Subset of the focal-sweep images in Figure 16d by Lytro (left)
and our prototype (right).

ple set needs to have good spatial and spectral properties under dif-
ferent imaging projections. However, existing light field cameras
are built with regular, well aligned microlens and sensor arrays and
high-quality mainlens, and little attention to the quality of sample
pattern was paid in the design phase. We have demonstrated that
mainlens aberrations and microlens/sensor sample irregularities can
greatly enhance the quality of light field cameras.

In sum, the microlens and sensor samples are best placed in ir-
regular and yet well-spaced distributions. Blue noise offers good
theoretical design, while misaligned regular sampling provides bet-
ter practical engineering due to its simplicity and similar coverage
(with less anti-aliasing) benefits. Mainlens aberration can help im-
prove the coverage and randomness of existing microlens and sen-
sor sample patterns. We recommend spherical aberration due to its
effectiveness in quality improvement, simplicity for computation,
and practicality for engineering.

10 Limitations and Future Work

The current lens design flow requires much manual effort and can
be further improved, e.g., set the coverage measurement as a plug-
in objective for optimizing aberrations. The increased flexibility
would enable us to start with an even simpler and lower cost basic
system.

We focus on overall sample distributions and do not consider color
filter design. We believe the traditional Bayer mosaic pattern can be
sub-optimal for light field imaging, and further improvement might
be possible by extending 2D multi-class sampling [Wei 2010] for
designing color filter in 4D space. For clarify of analysis, our sim-
ulation uses a simple and efficient image processing pipeline and
treats all samples equally. For practical engineering, we plan to
consider factors such as sample-dependent pre-filtering effect [Ng
2006; Liang and Ramamoorthi 2015].

We choose projection as the reconstruction method due to mini-

mal parameter tuning and a lower bound of system performance.
Further quality improvement is possible via more advanced recon-
struction such as [Bishop and Favaro 2012; Broxton et al. 2013].

As a general future direction, we would like to explore further appli-
cations that use a single sample set under different transformations,
such as changing view-points for light fields, designing light field
displays, and projecting samples for Monte Carlo rendering.
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Supplementary Materials

A Case Study

In 2012, Lytro shipped the first consumer-level light field camera
on the market. . It is built with on-the-shelf materials including
lens and sensors. The light field related parameters of the camera is
listed in Table 1.

The photosensor is the CMOS sensor with Bayer mosaic pattern,
with the pitch size 1.4µm. The tiling of the microlens array is
hexagonal, and the pitch size (distance between two parallel edges)
of each microlens is 14µm. The distance between the microlens
array and the photosensor is 25µm, identical to the focal length of
the microlens. The effective photosensor area is 24922µm, cov-
ering roughly 379 rows of microlens with 330 microlens in each
row.

The main lens in the Lytro camera was designed for the conven-
tional camera. It has a large optical zoom range (8×) and nearly
constant F-number (f/2), which are enabled by the sophisticated de-
sign with 10+ glass components bundled in multiple groups. A light
ray needs to traverse through 23 aspheric and 7 planar refractive
surfaces to reach the photosensor. The lens aberration is negligible
except near the extreme of the working range.

We show the projected samples and refocus images in Figure 17 as
an expanded version of Figure 3. To generate the refocus image, we
first perform simple linear demosaicing to convert the Bayer light
field into a full-color one, and then apply the projection method
described in Section 3.2. The pixel pitch in the refocus images is
3.5µm, 4-times smaller than the microlens pitch size. The recon-
struction kernel k is Gaussian with standard deviation 1.75µm. No
additional post-projection enhancement is applied.

One can make many observations from Figure 17:

1. The overall sharpness/contrast gradually decreases with |λ|
due to prefiltering.

2. When |λ| is small (< 10), the resolvable details is much thin-
ner than the microlens pitch size. For example, one can clearly
read 600 lines per image height at λ = 2.

3. When λ = 0, we see strong aliasing although the image con-
tract is very high.

4. Similar aliasing also arise in other λ’s, such as -13, -12, 5, 6,
10, etc.

The first and the second observations match the recent analysis by
[Liang and Ramamoorthi 2015]. The prefilter can limit the resolu-
tion of the projection method and its bandwidth is depth-dependent.
As the target scene is away from the microlens away, the prefilter
bandwidth would decrease and suppress more high-frequency com-
ponents. Since the prefilter profile is far from a perfect bandlimited
filter (e.g., the sinc function) due to the non-uniform spatial-angular
sensitivity profile of the photosensor, we can obtain details higher
than the spatial resolution set by the microlens density.

However, there is no existing model to explain or predict aliasing
in the third or fourth observations1. The aliasing arises because the
bandwidth in the refocus image exceed the density of the projected
samples, and we can easily verify this by comparing the projected
samples and refocus images in Figure 17. Given this observation,
we can clearly see that the image quality at certain λ’s is limited
by the sample distribution, not the prefilter strength (especially at
λ = 0).

1although similar results/observations has been made in other work [Yu
et al. 2012; Fiss et al. 2014]

B Relaxation

To explore the possibility of further coverage improvement, we
have extended Lloyd relaxation [Lloyd 1983] for 4D light field sam-
ples. Specifically, we can extend the Voronoi and centroid steps of
traditional 2D Lloyd relaxation to 4D light field spaces to minimize
Equation (11). Below, we consider γ = 2 for formulation and anal-
ysis, and similar approach can be applied for other γ values.

For γ = 2, we have the following by taking patial derivatives of
Equation (11) under fixed Voronoi regions [Liu et al. 2009]:

∂C2(P,Λ)

∂ (si, ti)
= 2

∫
λ∈Λ

wλ
∑

(sj ,tj)=(si,ti)

∫
p∈Vλ,j

(qλ,j − q) dq dλ

∂C2(P,Λ)

∂ (ui, vi)
= 2

∫
λ∈Λ

wλ · λ
∫
p∈Vλ,i

(qλ,i − q) dq dλ

(15)

where (si, ti) and (ui, vi) are the spatial and angular coordinates
corresponding to the 4D point pi whose projection is qλ,i =
(xi, yi) as in Equation (3). The extra

∑
is needed for the spatial

component due to the potential one-to-many mapping to the angular
components.

Denote mλ,i as the centroid for Voronoi region Vλ,i:

mλ,i =

∫
q∈Vλ,i

q dq

|Vλ,i|

|Vλ,i| =
∫
q∈Vλ,i

dq

(16)

we have:

∂C2(P,Λ)

∂ (si, ti)
= 0

→
∫
λ∈Λ

wλ
∑

I4
2(pi)=(si,ti)

|Vλ,i| (qλ,i −mλ,i) dλ = 0

→


si =

∫
λ∈Λ wλ

∑
I4

2(pi)=(si,ti)
|Vλ,i|(−λui+mλ,i,x)dλ∫

λ∈Λ wλ
∑

I4
2(pi)=(si,ti)

|Vλ,i|dλ

ti =

∫
λ∈Λ wλ

∑
I4

2(pi)=(si,ti)
|Vλ,i|(−λvi+mλ,i,y)dλ∫

λ∈Λ wλ
∑

I4
2(pi)=(si,ti)

|Vλ,i|dλ
(17)

∂C2(P,Λ)

∂ (ui, vi)
= 0→

∫
λ∈Λ

wλ · λ |Vλ,i| (qλ,i −mλ,i) dλ = 0

→


ui =

∫
λ∈Λ wλ·λ|Vλ,i|(−si+mλ,i,x)dλ∫

λ∈Λ wλ·λ2|Vλ,i|dλ
vi =

∫
λ∈Λ wλ·λ|Vλ,i|(−ti+mλ,i,y)dλ∫

λ∈Λ wλ·λ2|Vλ,i|dλ
(18)

Thus, under general unconstrained settings, the 4D light field coor-
dinate of sample pi can be determined via iterating the spatial and
angular components in inter-leaving steps, each via simple linear
system as above. For constrained settings we can keep some of the
variable fixed, e.g., move only the spatial/angular components with
fixed sensor/microlens samples.

Results Figure 18 demonstrates relaxation results for the sen-
sor samples with fixed hexagonal microlens samples measured by
γ = 2. The energy values can fluctuate a bit instead of mono-
tonically decreasing since the projection regions can change across
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Figure 17: Characteristics of the Lytro camera. Each group includes (top) the projected sample distribution, (middle) the refocus image from the raytracer-
simulated light field, and (bottom) the refocus image from the real Lytro camera unit. The crop for the sample distribution and the refocus image are 56µm×
28
√
3µm and 10002µm, respectively, around the center of the photosenor. The target scene is the ISO-12233 chart covering the entire field-of-view.

different iterations and λ (see discussions around Equation (14)).
Figure 18 contains two sub-cases for analysis: a smaller set λ =
{−1.5,−1.0,−0.5} and a larger set λ = {−10 : 0.5 : 10}. As
shown in the smaller λ range case, relaxation with a single λ = −1
(Figure 18b) provides better results than optimizing any other λ
combinations. Results with larger λ range (Figure 18h and Fig-
ure 18i) further confirms the benefits of optimizing only λ = −1, as
expected due to the over-constrained nature. We thus conclude that

direct blue noise distribution over the sensor domain (at λ = −1)
provides a very simple and effective solution, and we believe it is
unlikely to come up with more effective design for sufficiently large
λ sets. Similar conclusions can be made for spatial relaxation for
microlens samples.
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Figure 18: Relaxation results for white noise initial condition and different λ set. Within each sets are the coverage measure via Equation (11) and the final
projected point sets at λ = {−1.5,−1.0,−0.5}. Cases (a) through (g) are measured with different subsets of λ = {−1.5,−1.0,−0.5} while (h) through (i)
are measured with λ = −1.0 and λ = {−10 : 0.5 : 10} (min, increment, max). We set β = 0 as this is a generic, non-device specific, analysis.

B.1 Discussion

What would be the optimal microlens and sensor element distribu-
tions under theoretical and practical considerations? Given that a
fixed microlens + sensor combination has to be reused for many
different λ values, this is a highly constrained problem.

Our results indicate that noise or misaligned sampling is the best
option. This is particularly so without mainlens aberration. For
|λ| ≤ 1, the projected microlens regions do not overlap, and thus
well-spaced sampling (either regular or blue noise) will optimize
distribution within microlens projection regions. For |λ| > 1,
the projected microlens regions start to overlap each other in com-
plicated ways. It is in general not possible to maintain uniform
projection distributions for a sufficiently different number of λ val-
ues. Here, the irregularity brought by noise or misalignment avoids
the potential bad coverage caused by perfect alignment of regular
sampling, e.g., at λ = ±5 and ±2.5 in Figure 6.

Mainlens aberration randomizes all distributions but benefits regu-
lar ones the most. As described in Section 3.3, we want to optimize

the spherical aberration for spatially invariant improvement. Our
analysis indicates that |wSP| > 3r (Equation (6)) will be enough.

C Additional Results

C.1 Spectral Analysis

Figure 19 presents the differential domain spectrum (DDA) [Wei
and Wang 2011] for the corresponding projected sample sets in
Figure 6. As demonstrated in [Wei and Wang 2011], DDA relates
to Fourier power spectrum [Lagae and Dutré 2008], the traditional
method for measuring spectral sample properties, through the use
of a Gaussian instead of cos kernel for sample location differen-
tials. We choose DDA instead of Fourier power spectrum due to
this property equivalence and faster computation speed.

From the imaging perspective, the ideal DDA or Fourier spectrum
should be as uniform as possible without any structural peak. In this
aspect, the spectrums in Figure 19 correlates well with the spatial
samples in Figure 6 in terms of regularity and well-spaced-ness.
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Figure 19: Differential domain spectrum (DDA) [Wei and Wang 2011]
for projected sample sets in Figure 6. Each DDA image is collected by
Gaussian splatting location differentials for which at least one end sample
falls into the central one-third square of the corresponding spatial sample
set in Figure 6.
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Figure 20: Projected sample distributions under different Ts and λ with
θ = 18◦. Notice the improved spatial coverage compared to the top row of
Figure 6.

C.2 Beyond Microlens Resolution

It is frequently stated that a single light field camera design has
an inherent trade-off between spatial and angular resolutions. For
example, if the microlens sample density is 100× lower than the
photosensor density, the spatial resolution will be 100× lower than
a conventional camera with the same photosensor density. How-
ever, prior studies [Liang and Ramamoorthi 2015; Yu et al. 2012]
have provided theoretical and empirical evidence of imaging be-
yond the microlens resolution, even for a simple projection-based

algorithm. This is also corroborated in our synthetic simulation
(e.g., Figure 12) and experimental results (e.g., Figure 3).

Figure 21 demonstrates that it is possible to reconstruct images with
resolutions much higher than the corresponding microlens arrays.
More detailed discussions can be found in prior work such as [Liang
and Ramamoorthi 2015].

C.3 Capture Processing

Here we provide more results taken by the prototype and describe
the details on the processing for the results in Figure 14 and Fig-
ure 16.

Pre-processing The raw data from the prototype stores linear
irradiance values with a constant pedestal. We remove the pedestal
and perform simple linear demosaicing to convert the Bayer light
field into a full-color one. The geometry of the hexagonal microlens
array is estimated from an image of a light panel with spatially and
angularly uniform emission.

Projection For the planar resolution chart in Figure 14, the sim-
ple projection method in Section 3.2 is used. The reconstruction
kernel k is Gaussian with standard deviation set as half of the sam-
pling step in the output image. For the natural scenes in Figure 16,
we generate the all-in-focus images using the modified projection
method in [Liang and Ramamoorthi 2015]. Specifically, we first use
the conventional algorithms, such as [Hirschmuller 2005] or [Liang
et al. 2008], to estimate the depth information from the aberration-
corrected light field. We then project each light field sample accord-
ing to its own depth value and rejects the samples if it is beyond the
depth value of the closest surface to the camera.

Post-processing Because the prototype and the first generation
Lytro camera are totally different systems, the difference in spec-
trum sensitivity, exposure settings, field-of-view or other proper-
ties are quite significant. To facilitate the visual comparison be-
tween the images from the prototype and the Lytro camera, we pick
the one with better auto-white-balance and transfer its per-channel
mean to the other. We also apply a small amount of brightness and
contrast compensation to match the exposure difference. All these
modifications are applied to each pixel independently, and no spa-
tial filtering, or deconvolution, is used to enhance the sharpness or
resolution.

Computation The refocus images are generated by the simple
projection method, without using any deconvolution process or re-
lying on any content-dependent prior. Its performance is stable and
the result can be used as the initial solution for further iterative opti-
mization [Venkataraman et al. 2013]. The processing time for gen-
erating the refocus image is 900ms on a Macbook Pro with Intel i-7
2.7GHz, using one single thread and non-optimized C++ code.

Results Figure 22 provide more natural scene capture results.
Similar to Figure 16, the comparisons to the Lytro photos are in-
cluded. Figure 23 and Figure 24 are the corresponding depth infor-
mation used in all-in-focus image generation.

Finally, Figure 25 shows the images refocused at λ = 0 gener-
ated by the method of [Ng et al. 2005] at microlens resolution and
the projection method at 4× microlens resolution. We can clearly
see more details, indicating that the high-frequency information is
preserved by the prototype and can be recovered without complex
deconvolution process.



(a) Lytro camera, MLA resolution (b) Our prototype, MLA resolution

(c) zoom-in of (a)

(d) zoom-in of (b)

(e) Lytro camera, projection resolution (f) Our prototype, projection resolution

(g) zoom-in of (e)

(h) zoom-in of (f)

Figure 21: Comparison of microlens array (top group) and projection (bottom group) resolutions. Notice that it is possible to reconstruct images with
resolutions much higher than the corresponding microlens arrays.

C.4 Other Aberrations

While we focus on spherical aberration in the paper, our method can
be applied for other types of aberration. The only requirement is the
formulation of the per-sample correction vector as in Equation (6),
dubbed as transverse aberration in optics. The formulas for most
low-order aberrations are available in [Sasián 2012].

We show the result of using wavefront coding [Dowski and Johnson
1999] in Figure 33. The formula for its correction vector is:

[εs(p), εt(p)] = wc(2r)
−2[u2, v2], (19)

where wc is a free parameter. We can see that wavefront aberration
can also effectively improve the coverage measurements and lead
to more consistent image quality across different focus distances.
This agrees with the observation by Cohen et al. [2014].
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Figure 22: More results for Figure 16.



(a) poster (b) tree trunk

(c) hair (d) wall

(e) street

Figure 23: Depth masks for Figure 16. Each depth mask pixel is assigned the corresponding depth as gray-scale color (darker for nearer) and colored the
red channel if λ ' 0.



(a) bush (b) grass

(c) leaves (d) flowers

(e) tree bark

Figure 24: Depth masks for Figure 22.



(a) tree bark

(b) street

Figure 25: Refocus results of tree bark and street in Figure 16. For each scene, we generate the refocus image of microlens resolution by the method of [Ng
et al. 2005] (left) and the projection method at 4× microlens resolution (right). The focus point is set to λ = 0 and the effective f-number is F/1.4. No
per-pixel depth information is used here.
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Figure 26: More results for Figure 20.
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Figure 27: Similar to Figure 18 but with blue noise initialization.
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Figure 28: More results for Figure 6.
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Figure 29: More results for Figure 19.
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Figure 30: More results for Figure 12.
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Figure 31: Zone-plate imaging for projected sample sets in Figure 6. Similar to Figure 12 except that the mainlens is focused at the microlens plane (λ = 0)
for all λ reprojections. Thus, large |λ| values synthetically blur the scene.
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Figure 32: Measurement of Equation (7) for different camera models in
Figure 6. Note that blue noise and white noise produce similar results for
either microlens or sensor samples.
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Figure 33: More results from Figure 32 with wavefront coding, wc =

140µm.


