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Abstract

Photography is an abstruse skill. Taking a perfect photo needs a great deal of knowledge

in aesthetics, physics, optics, and even electronics and also requires a lot of patience. In

this dissertation, we examine the process of photography using 4D light field representa-

tion. This new approach leads to a novel framework to describe the image formulation,

a new device to capture high dimensional visual data, and many new applications.

In the first part of the dissertation, we analyze the light transport of the light rays

in the picture-capturing process and show that several photographic effects, including

magnification, focusing, and vignetting, can better be explained in the 4D light field

domain or the dual 4D frequency domain than in the 2D image domain. We also show

this framework can be applied to many new applications, such as digital refocusing,

all-focused fusion, light field camera parameter setting, depth detection without corre-

spondence matching, and so forth.

In the second part of the dissertation, we present a new compact device, called pro-

grammable aperture, to capture the light field without moving the camera or losing

the image resolution. The device is more flexible, inexpensive, easier to calibrate than

the previous light field cameras. It also enables the multiplexing of the light field to im-

prove the data quality. We show several different implementations of the programmable

aperture and compare the performance of different imaging devices.

We then remove the inherent defects of the captured light field by two novel post-

processing algorithms. The photometric calibration algorithm can automatically re-

move the vignetting-alike effects without any reference object. The multi-view depth

estimation generates per-view depth maps from the light field. It utilizes accurate occlu-

sion model and cross-bilateral filtering to efficiently achieve high quality results. The

xiii
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combination of the device and the algorithms produce a distortion free, high spatial-

and high angular- resolutions light field with auxiliary depth information of the scene.

We demonstrate several applications using the captured light field, including view in-

terpolation, digital refocusing, and a novel feature-based refocusing.

In the third part of the dissertation, we describe two spinoff topics. These two topics

are not only related to the practical light field acquisition and applications, but are also

very important to other computer vision and signal processing problems. The first topic

is the computational and storage bottleneck of the global optimization algorithms. We

make a complete analysis of the bandwidth and memory cost of the belief propagation

and then propose a new tile-based belief propagation algorithm. While its performance

is very close to the original belief propagation algorithm, the memory and bandwidth

requirements are reduced by orders of magnitude. We also propose a new message

construction method which can be applied to all robust smoothness functions. These

two algorithms enable efficient VLSI or GPU implementations and make the global

optimization more affordable to the resource-limited platforms for real-time mobile

applications.

The second topic is about the signal demultiplexing. Traditional demultiplexing

method assumes that the noises are independent and identically distributed, which is

invalid in the image formulation. We reformulate the demultiplexing process in a prob-

abilistic framework and show that when the noise is dependent to the sensed signal, the

MAP estimation is equivalent to a L1 regularized least-square problem. The simulation

results show that the signal recovered by the proposed algorithm has a higher signal-to-

noise ratio than that recovered by the traditional demultiplexing method. We believe this

new formulation can also be applied to other applications that require demultiplexing.

In summary, this dissertation presents several novel and important solutions to ana-

lyze, acquire, and efficiently utilize the high dimension, high quality, and high resolu-

tion visual data. We show that by using the light field representation, the photographic

effects can be described in a way more close to the real functionality of the camera. We

present a novel backward-compatible device that can capture high resolution light field

data without moving the device itself or using complex optics, and demonstrate several



xv

novel applications of the light field data. Finally, we propose a modified belief propaga-

tion algorithm which removes the fundamental memory, bandwidth, and computation

bottlenecks of the original algorithm, and a new noise-aware demultiplexing algorithm

which has a better performance than the traditional one.
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Chapter 1

Introduction

Light field has become a popular tool for computer graphics, computer vision, image

understanding, image processing, signal processing, geometric optics, and data com-

pression. By representing the radiance carried by a light ray as a sample of the 4D

signal, we can analyze the behavior of the light ray in a principled, signal-processing

framework. This new representation has enabled numerous novel applications and re-

search topics such as image-based rendering, image-based modeling, precomputed ra-

diance transfer, and so forth. It also has been used to re-formulate many fundamental

problems in the visual signal analysis, such as the light transport process in rendering,

the inversion of the image formulation, motion analysis, etc. The qualitative results of

the old methods can now be quantitatively described using the terminology in the signal

processing.

In this dissertation, we will focus on a specific topic, photography. The photography

is traditionally modeled as a 2D projection of the 3D world. Many natural effects in the

image formation process are modeled as independent distortions to a virtual, perfect

image. Although CCD or CMOS sensors are widely used in commercial cameras now,

these fundamental models never change.

Regarding this, we re-formulate the whole image formation process in the light field

domain, which results in an unified light transport model for the photographic effects,

and inspires a new device to capture the light field. We show that the new model and

new device can enable several novel applications.

1
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Analysis (Chapter 2)
Light Transport in Photography

All-Focused Image Fusion
Depth-Detection in Light Field

Acquisition (Chapter 3)
Programmable Aperture 
Photometric Calibration

Multi-View Depth Estimation

Applications (Chapter 4)
Digital Refocusing
View Interpolation

Feature-Based Refocusing

Introduction (Chapter 1)
Preliminary

Efficient Processing (Chapter 5)
Tiled-Based Belief Propagation
Noise-Aware Demultiplexing

Figure 1.1: Overview of the dissertation.

1.1 Overview

The overview of this dissertation is given in Figure 1.1. In the next section of this

chapter, we first give the preliminary knowledge about the light field, including the

basic mathematical terminology and the history of its development. Since each chapter

(or each section in the same chapter) covers a unique research topic, the relevant prior

arts are described at the beginning of each chapter/section.

Chapter 2 focuses on the analysis of the light transport in photography. We derive

a new model to describe the image formulation using the light transport theory. Using

this model, we show that all photographic effects, including focusing, magnification,

vignetting, etc, are all results of the transformation, modulation, and projection of the

light field. A nice property of this model is that some effects can be explained in the 4D

frequency domain. We show an application that uses the concept of auto-focusing to

estimate the possible depth planes from the spectrum of the light field, and de-convolves

the light field spectrum to recover the all-focused image. We also show that the analysis

can be used to specify the parameters of the light field cameras.

In Chapter 3, we will describe a novel device called programmable aperture to ac-

quire the 4D light field. Programmable aperture can dynamically and precisely control
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the transmittance of the aperture plane. This enables the camera to sequentially capture

the light field without sacrificing the image resolution like other light field cameras do.

Also the quality degradation problem can be efficiently resolved by using the multiplex-

ing technique.

Then we present two post-processing algorithms that are essential to produce high

quality light field. The first algorithm can automatically remove the complex photo-

metric distortion from the light field without relying on any specific reference object. A

more consistent rendering result can be thus obtained from the calibrated light field. The

second algorithm exploits the multi-view nature of the light field data to infer accurate

per-view depth maps. The estimated depth maps can be applied to several applications,

such as anti-aliasing and z-keying. These two algorithms can be applied to not only our

light field data, but also those captured by other light field cameras as well.

In Chapter 4 we demonstrate several applications using the captured light field and

the estimated depth maps. The first application is view interpolation. While this appli-

cation is not novel, we focus on the details of efficient implementation, such as how to

combine depth maps with light field in the rendering pipeline. We then describe our re-

focusing algorithm which combines both the light field and the depth maps to generate

plausible and physically correct results. The third application, called feature-based re-

focusing, uses robust feature matching to perform homography estimation. This makes

user able to adjust the focus plane in a more intuitive way.

Before concluding this dissertation, in Chapter 5 we present two efficient processing

methods that are not only related to the light field, but also relevant to other computer

vision and signal processing problems. The first one is a modified belief propagation

algorithm, dubbed tile-based belief propagation. By only preserving the messages along

the boundaries of the tiles, this algorithm can significantly reduce the bandwidth and

memory requirement by at least an order, while the performance of the message passing

is unaffected. Therefore, this modified algorithm is much more suitable for GPU and

VLSI implementation than the original algorithm. Also a fast message construction for

parallel processors is described.

The second algorithm is a noise-aware demultiplexing algorithm. Traditionally,
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multiplexing and demultiplexing are considered as linear and signal-independent pro-

cedures, but in the imaging sensing process the noise depends on the signal. We show

that according to the statistical analysis, the optimal noise-dependent solution can be

obtained by solving a L1-regularized least square problem.

1.2 Preliminary of Light Field

The visual information is a result of the complex interactions between the lighting, ob-

ject geometry, materials, observer location, and the characteristic of the human visual

systems (or of the imaging sensors). To generate a photorealistic image, all the param-

eters must be precisely modeled or specified, and a great amount of the computations

are required to simulate the process of the interactions.

However, if we focus on the geometric optics1, the overall effects of those interac-

tions are simply re-direction, scattering, and attenuation of light rays. The pioneering

work of Adelson and Bergen shows that distribution of all light after the complex in-

teractions can be uniquely described by a seven-dimensional plenoptic function [1].

Specifically, the radiance R carried by a light ray is a sample of the plenoptic function:

R = P(Vx,Vy,Vz,θ,φ,λ, t), (1.1)

where (Vx,Vy,Vz) are the coordinates of the viewing position, (φ,λ) are the spherical

coordinates of the viewing angle, λ is the wavelength, and t is the time. A set of these

variables can uniquely represent a light ray and thus P is a 7-to-1 mapping function.

Once the whole plenoptic function is recorded, we can re-create all visual content with-

out simulating the interactions.

However, the plenoptic function is expensive and difficult to sample, store, or even

reconstruct. Therefore, several simplifications must be imposed. First, one can remove

the time axis and focus on the static scene. Second, one can utilize the trichromacy of

the human vision system to remove the wavelength axis. The 7-D plenoptic function

now becomes three 5-D plenoptic functions, one for each color channel. However, it is

still too expensive to sample and store a 5D signal.

1The lights are incoherent and objects are much larger than the wavelength of light.



5

(a) (b) (c)

u

v
s t

u

v

s

t
u st

v

Figure 1.2: Different parameterizations of the light field.

(a) The plane-plane parameterization, (b) the sphere-sphere parameterization, and (c)

the manifold-sphere parameterization.

If we always stand outside the convex hull of the scene, the observed radiance along

a ray is constant since the light ray can never interact with other objects. In other words,

there is redundant information in the 5D function. We do not have to specify the viewing

position but only the light rays. In the 3D world, every light ray can be parameterized

by only four coordinates 23.

This property is first exploited in [2], where the 4D function is called a photic field.

Later this function is termed as light field in [3] and lumigraph in [4]. These methods

attempt to achieve the same goal, representing the radiance along the rays in an empty

space by a four dimensional function:

R = L(u,v,s, t). (1.2)

We will use term light field in the rest of the dissertation.

The light field can be parameterized in many different ways as shown in Figure

1.2. We can parameterize a light ray by its intersections to two planes (Figure 1.2(a)),

or we can parameterize it by its intersections to a sphere enclosing the scene (Figure

1.2(b)). Generally speaking, a light ray can be parameterized by the coordinates of

its intersection points with two parametric 2D manifolds (Figure 1.2(c)), as long as

each light ray only intersects the manifold once. Therefore, the choice of the manifold

2Each ray may have 2 different directions but since we only care about the rays emitted outward the

convex hull, this ambiguity is removed.
3We will describe many different parameterization methods later.
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Figure 1.3: The light field in the camera.

depends on the shape of the convex hull of the scene.

Our main interest is the light fields inside the camera, which can be intuitively and

uniquely represented by the plane-plane parameterization, as shown in Figure 1.3. Each

light ray in the camera must pass thorough the aperture at some point to enter the cam-

era, and must hit some point on the image plane. The origins of these two planes are

defined as the intersections to the optical path.

Given this representation, we attempt to answer many questions in this dissertation.

How this light field is related to the light field outside the camera? How a 2D photo

is generated from the 4D light field? How to capture this 4D light field with a high

resolution and high quality? Can we estimate the scene from the light field? Can we

do this efficiently? In the next chapter, we give the theoretical analysis of photography

process using the light field representation in the next chapter.



Chapter 2

Light Transport in Photography

Different effects in the image formation process are traditionally described by many

independent mathematical models. For example, the basic pinhole camera model de-

scribes the perspective projection. Objects farther from the camera would be smaller on

the image than the objects closer to the camera [5]. The out-of-focus objects usually

look blurry. This is usually described by a spatially variant box or Gaussian filter on the

image plane. The size of the filter kernel can be derived analytically according to the

object depth and camera parameters [6]. The image is usually dimmer at the corner,

which is modeled by the vignetting effect [7]. For a natural image with many effects,

we usually assume there is a perfect reference image and model those effects as separate

degradations to the reference image1.

However, if we examine the mechanism of a camera, it actually does not do any-

thing about the filtering or projection2. The camera first refracts and blocks the light

rays. Then the imaging sensor simply integrates all incoming radiances together into an

irradiance value. The footprints of the light rays which are infinitesimally small do not

scale with the traveling distance, and thus the light rays are not perspectively projected.

The light rays also do not interact with each other so there is no filtering involved.

In other words, while the operation of a camera is extremely simple, people on

the contrary use many separate models to describe the various effects in the captured

1These effects may be applied in a specific order, which was seldom discussed in the past.
2We focus on the optics part, not the digital image processing pipeline in the commercial digital

cameras.

7
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photo. In this chapter, we present the complete light transport from the object surface

to the sensor and show that the photography process can be described by simple trans-

formations and modulations of the light field. The resulting single equation can fully

describe several photographic effects together. Both the pinhole and lens camera can be

described by the proposed model.

Furthermore, since the light field is a signal and all operations are linear, we can

move the whole analysis to the frequency domain. The spectrum of the light field has

a very distinct Structure which depends on the scene geometry and the camera param-

eters. We can use the spectrum to decide the parameters of the cameras or light field

cameras. Still, all the photographic effects can be described in the frequency domain as

well, while some of them would even have a more intuitive explanation. Although the

full light transport theory is more general than the content we present, our work fills the

missing piece of the whole transport process.

In the following, we first review the important work and introduce the preliminary

concepts and notation. Then, we analyze the transportation of the light rays in the

imaging/photography process and derive a combined light field transformation operator.

In a sequel, we present how to interpret the photographic effects by the transformation,

in both the primal and frequency domains. We also utilize the spectrum of the light field

to other applications. In the end, we discuss the future work and conclude this chapter.

2.1 Previous Work

The interactions between the light rays and the environment can be exactly described

by the rendering equation [8], as long as all parameters of the environment are known.

However, these parameters are difficult to obtain and the brute force simulation is usu-

ally computationally extensive. Therefore, people are getting more interest in knowing

that given the local or statistic property of the environment, is it possible to predict

rendering results or reduce the required computation resource for simulation? or is it

possible to estimate the environment parameters from the captured images rendered by

the nature forces?

The simplest property is the Shannon sampling theory [9]. Because the final goal
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of simulating the rendering equation is to generate a visually plausible image, one can

specify the sampling rate and the reconstruction filter according to bandwidth of the

signal. For example, when a diffuse textured surface is uniformly shaded, the image

can be considered as a warping of the texture map due to the perspective transform

[10].

Later people have found that other phenomena in rendering can also be interpreted

in a signal-processing framework if we consider the light rays as samples of the 4D light

field signal. For example, in [11] and [12] it is shown that the shape of the light field

signal depends on the depth range3 of the scene. However, the inter-object interaction

like occlusion is ignored. In our analysis we show that the occlusion due to the aperture

plays an important role in generating natural images. Similar analysis is also used to

address the aliasing problem in the automultiscopic 3D displays [13].

In [14] and [15] a complete framework for forward and inverse rendering is pre-

sented. In this framework, the reflected light field is described as a convolution of the

lighting (incident light field) and BRDF or a product of the spherical harmonic coef-

ficients of the lighting and BRDF. This seminal work not only analyzes the posedness

of the inverse rendering problems but also shows that the expensive rendering equation

could be efficiently evaluated or stored in a low-dimensional space in many cases [16].

The following numerous researches in the precomputed radiance transfer (PRT) all at-

tempt to further exploit this property [17]. Other effects like the shadow casting is also

analyzed in a similar principle [18].

In [19], phenomena including occlusion, shading, surface curvature, and transport

are jointly analyzed by a single signal-processing framework. The framework shows

that these phenomena either shear or convolve the light field spectrum, and they can

be accumulated together. We follow this line and focus on the effects caused by the

lens and aperture of the camera, the final elements in the light transport before reaching

the image plane. Finally, in [20] a first-order analysis is proposed to address the cases

difficult to model in the Fourier domain.

The light transport analysis is also used in designing many light field cameras. In

3The distance between the object and the reference plane.
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Figure 2.1: The light field parameterizations in light transport analysis.

(a) The plane-plane parameterization. (b) The plane-sphere parameterization.

[21], the modulation effect of the aperture is analyzed, but it does not consider the

whole light transport process. In [22] the light transport equation similar to what we

will develop is presented. However, it only discusses the applications of the light field

cameras and totally neglects the effect of the aperture. On the contrary, we present

a complete analysis here, which can interpret all photographic effects in traditional

cameras and other devices.

2.2 General Light Transport Operators

In this section we briefly present the notation and the general light transport operations.

We perform our analysis in the 2D space to make the formulation elegant. In this way,

we only need two 1-D parametric manifolds to represent a light ray and thus the light

field is 2 dimensional. We shall discuss how to extend the analysis to the 3D cases later.

2.2.1 Parameterization

We will use many different parameterizations in our analysis4. When the light rays

propagate in the space, we use the parameterizations shown in Figure 2.1 to represent

4Note that the plane becomes 1D in the 2D space.
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Figure 2.2: The light field parameterization in the camera.

the light field. In the first plane-plane parameterization we used, the light rays intersect

one plane U at point u, and another plane V parallel to the first one at point v. The

distance between the two planes is 1 unit and both are perpendicular to the optical path

of the camera. The coordinate of the first intersection point is defined with respect to the

optical path, and the coordinate of the second intersection point is defined with respect

to u. In other words, for each light ray, the intersection point u forms a local frame for

the plane V.

The second plane-sphere parameterization uses one intersection point u and the an-

gle θ with respect to the central direction to represent a light ray. These two parameteri-

zations are linked by v = tanθ and because the tangent function can be linearized when

θ≈ 0, they are equivalent around the central direction.

After the light rays enter the camera, we use another plane-plane parameterization

shown in Figure 2.2. The two planes are defined at the physical aperture plane and the

image plane. The distance between these two planes is F . We will later describe how

to transform the parameterization in 2.1(a) to this parameterization.

The light field L([u,v]T ) is a 2D signal that represents the radiance values carried

by the light rays. We will also analyze the spectrum of the light field in the Fourier

domain. For the plane-plane parameterization, the spectrum L([ fu, fv]T ) is obtained by
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the Fourier transform:

L

 fu

fv

=
∫

∞

u=−∞

∫
∞

v=−∞

L

 u

v

exp(− j2π( fuu+ fvv))dudv, (2.1)

where j =
√
−1. To make the equations concise, we also define u = [u,v]T and f =

[ fu, fv]T

2.2.2 Light Ray Traveling

Assume the light rays of interest are emitted from a surface, we can define the U at the

surface and have the initial light field L0([u,v]T ). If we sample the light field at d away

from the surface by setting the new reference plane U at d, as shown in Figure 2.2, the

sampled light field L1([u,v]T ) contains the information exactly the same as L0 does, but

these information are represented in a different way. By simple derivations, we have

L1([u,v]T ) = L0([u− vd,v]T ), which can be written in a matrix form:

L1

 u

v

= L0

 1 −d

0 1

 u

v

= L0(Tdu), (2.2)

where Td is a 2×2 matrix and a function of d.

According to the Fourier linear transformation theorem, the spectrum of the new

light field is defined as:

L1(f) =
1

|det(Td)|
L0(T−T

d f) = L0

 1 0

d 1

 f

 (2.3)

Toy example 1: In Figure 2.3 we show a simple example of the light ray traveling.

First, we align the plane with a planar Lambertian object. Because the brightness of this

object is direction-invariant, the light field can be described by a texture function T (x)

and thus L1([u,v]T ) = T (u), as shown in Figure 2.3(b).

Because the light field has no angular variation, all its energy would be on the fv = 0

subspace of the full spectrum. In other words, the power spectrum of the light field

would look like a horizontal line in the 2D space, as shown in Figure 2.3(c). One can

also think that the light field is obtained by convolving T (u) with a uniform function

along v, and thus the spectrum is a delta function along fv.
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Figure 2.3: Transformation of the light field due to the light ray traveling.

(a) The illustration of the propagation process. (b) The initial light field at the object

surface. (c) The spectrum of the initial light field. (d) The transformed light field. (e)

The spectrum of the transformed light field.
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We then propagate the light rays by 2000 units, update the reference plane, and re-

sample the light field. The result is shown in 2.3(d). We can see that the light field is

skewed due to the transformation Td . On can also treat the light field as a 2D image, and

the transformation Td is an affine transformation to the image. According to Equation

2.3, the spectrum of the light field is transformed as well, as shown in Figure 2.3(e)5.

However, the energy of signal still lies on a slice of the 2D space. In other words, the

light ray traveling does not convolve the light field in the spatial domain or Fourier

domain.

2.2.3 Occlusion

When a light ray is blocked by the object during traveling, the radiance of the light

ray becomes zero. This effect can be describes as a modulation of a binary occlusion

function B to the light field:

L1(u) = L0(u)B(u). (2.4)

When B(u) = 0, it means the light ray represented by u is blocked by the occluder, as

shown in Figure 2.4.

A modulation in the primal domain results in a convolution in the frequency (dual)

domain. Let ⊗ denote the convolution operator, then the spectrum of the blocked light

field is

L1(f) = L0(f)⊗B(f). (2.5)

Toy example 2: We use the propagated light field in the toy example 1 on page 12,

as shown in Figure 2.4(b) as the input. We place a fence as a blocker at the reference

plane. The blocked light field is shown in Figure 2.4(d). We can see that the light field

is modulated by a rectangle function along the u axis. The spectrum of the light field

is therefore convolved by a sinc function, as shown in Figure 2.4(e). We can see while

the original spectrum has only one lobe, the convolved spectrum has multiple side lobes

which are repetitive along fu.

5There are some residual errors which are due to the truncation of the signal
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Figure 2.4: Modulation of the light field due to occlusion.

(a)The illustration of the occlusion process. (b) The light field before blocking. (c) The

spectrum of the light field before blocking. (d) The light field after blocking. (e) The

spectrum of the light field after blocking.
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2.2.4 Refraction of the Lens

The general refraction of the light rays follows the Snell’s law, which cannot not be

expressed linearly in the light field representation. However, here we focus on the

refraction of the lens in the camera, which can be elegantly represented using the lens

parameters. For example, if we define the U plane at the thin lens of focal length f ,

as shown in Figure 2.5, the u coordinate of the light ray is unaffected by the lens, but

because the light ray is bent by the lens, the v coordinate becomes v− u/ f [23]. We

can see that this is equivalent to a transformation to the light field:

L1

 u

v

= L0

 1 0

1/ f 1

 u

v

= L0(R f u). (2.6)

The spectrum of the transformed light field can be derived similar to the case in Section

2.2.2.

Toy example 3: We again use the propagated light field in the toy example 1 as the

input. We place a lens with f = 600 at the reference plane as shown in Figure 2.5(a).

We can see that the light field is modified by a linear transformed. However, it is not

convolved or modulated. The power of the spectrum still lay on a 1D slice in the 2D

frequency space. Only the slope of this slice is changed.

2.2.5 Diffuse Shading

We consider only the shading by a planar Lambertian surface. For a diffuse reflector,

the reflected light field has no angular variation. The outgoing radiance is the integral

of the incoming radiance per unit area times the surface albedo ρ

L1([u,y]T ) = L1(u) = ρ

∫
L0(u)dA

= L1(u) = ρ

∫
∞

v=−∞

L0(u)(1+ v2)−1.5dv

= L1(u) = ρ

∫
∞

v=−∞

L0(u)G(v)dv, (2.7)

where G(v) is a parameterization function as defined in [19]. We can see that the

reflected light field is obtained by first modulating the incoming light field with a pa-
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Figure 2.5: Transformation of the light field due to lens refraction.

(a) The illustration of the refraction process. (b) The light field before refraction. (c)

The spectrum of the light field before refraction. (d) The light field after refraction. (e)

The spectrum of the light field after refraction.
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Figure 2.6: The parameterization function G(v).

rameterization function, and then integrating along the angular axis. This integration is

also known as a canonical projection operator.

As shown in [24], this projection operator in the primal domain is equivalent to

taking a lower-dimensional slice in the frequency domain. For the completeness, we

derive the 2D case below. Let Y (u) be a projected 1D signal of X([u,v]T ), then the

spectrum Y( fu) is defined as

Y( fu) =
∫

∞

u=−∞

Y (u)exp(− j2π fuu)du

=
∫

∞

u=−∞

∫
∞

v=−∞

X(u)exp(− j2π( fuu+0v))dudv

= X([ fu,0]T ) = [X(f)] fv=0 . (2.8)

Therefore, the spectrum of L1 is the slice of L0⊗G along the fv axis:

L1( fu) = ρ[L0(f)⊗ (G( fv)δ( fu))] fv=0. (2.9)

Note that G is constant along u so the spectrum is a Dirac delta function of fu.
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We should elaborate more the property of G, which is depicted in Figure 2.6(a). It

is a smooth band-limited function and thus the energy falls on the low frequency bands.

Moreover, in the case we are interested in (the light transport in image formation), the

range of v is very small, usually within (−1.2,1.2), as shown in Figure 2.6(c). In this

case, the range of the spectrum is much larger than the bandwidth of the signal, and thus

G( fv) would be approximately a delta function (Figure 2.6(d)). Therefore, the effect of

the convolution in Equation 2.9 is negligible.

2.2.6 Accumulation of Transformations

Because the operators presented above are linear, they can be accumulated together. For

example, assume that there are three different parameterized light fields L0, L1, and L2.

The reference plane of L0 is at the left, that of L1 is d1 away, and the that of L2 is d2

away from L1’s reference plane. Using Equation 2.2 and the associativity rule, L2 and

L0 are related by:

L2(u) = L1(Td2u) = L0(Td1(Td2u)) = L0((Td1Td2)u). (2.10)

The (Td1Td2) is the accumulated operator that describes the transformation of the light

field when the light ray travel d1 +d2 away from the origin.

We can also use the fact that the reference planes of L2 and L1 are d1 +d2 away and

obtain

L2(u) = L0(Td1+d2u). (2.11)

With simple calculation one can obtain Td1+d2 = Td1Td2 . That is, the accumulated

operator is equivalent to the direct operator.

Therefore, as the light rays propagate, refract, and block in the space during traver-

sal, we can simply accumulate all the operators sequentially without directly deriving

the operator that describes the overall light transport effect. While the modulation is in-

volved in the blocking and diffuse shading operators, we will see that these modulations

can be carried with the transformation together.
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Figure 2.7: A simple example of the light transport in photography.

2.3 Combined Transformation in Photography

We have presented the basic operators in light transport, now we use them to analyze

the light transport process in photography. Without loss of generality, we use scene and

camera setup shown in Figure 2.7 for derivation. The distance between the lens and

the image plane is F , and the diameter of the aperture is A. The initial light field Li is

measured at z units away from the lens.

2.3.1 Derivation without Aperture

The light rays first propagate z units to reach the lens, and thus the light field is trans-

formed by Td . Then the light rays are bent by the lens and the light field is transformed

by R f . Finally the light rays propagate to the image sensor and the light field is trans-

formed by TF . Let’s ignore the effect of the aperture for now and accumulate these

operators together, then we can obtain the final light field Lp:

Lp

 u

v

 = Li

TdR f TF

 u

v


= Li

 1− z
f −Fz(1

z + 1
F −

1
f )

1
f 1− F

f

 u

v

 . (2.12)
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Therefore, the light field in the camera is a linear transformation of the light field of

the outside world. Although we place a specific object in the scene to simplify the

description, any light field can be transformed into the camera using this transformation.

We call the accumulated operator TdR f TF photographic operator, which is denoted by

Cz f F . Note that in the (2,2) entity of Cz f F , we can see a term very similar to the well-

known lens equation. This term indicates that the lens equation is implicitly embedded

in our framework.

If the sensitivity of the sensor is direction-invariant, then the irradiance value it

records is equivalent to the reflected radiance from a diffuse surface. Therefore, the

captured image Ip(u) can be defined using Equation 2.7:

Ip(u) =
∫

∞

v=−∞

Lp(u)G(v)dv. (2.13)

The constant sensitivity factor is removed here for simplicity.

The spectrum of the transformed light field can be easily derived using the Fourier

linear transformation theorem:

Lp(f) = Li(C−T
z f F f)

= Li

 1− F
f − 1

f

Fz(1
z + 1

F −
1
f ) 1− z

f

 fu

fv

 . (2.14)

The spectrum of the captured image is

Ip( fu) = [Lp(f)⊗ (G( fv)δ( fu))] fv=0 ≈ Lp( fu,0). (2.15)

The approximation is valid because compared with other effects, the convolution effect

due to G is very small. Therefore, the spectrum of the image is the slice of the light field

spectrum along the line fv = 0. This approximation can simplify the analysis in certain

cases.
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2.3.2 Derivation with Aperture

In the derivations above the aperture is ignored. The aperture can be considered as an

occluder at the lens plane. Its blocking function BA(u) is a binary field, that is,

BA(u) = rect
( u

A

)
=

 1, |u|< A
2

0, otherwise
(2.16)

There are two sets of discontinuities in this binary field, one is along the line u−A = 0

and the other one is along the line u + A = 0. This function is a box function along u

and constant along v, and thus its spectrum is defined as

BA(f) = Asinc(A fu)δ( fv) = (π fu)−1 sin(πA fu)δ( fv). (2.17)

When the light rays reach the lens, the light field is transformed by R f Td and also

modulated by BA, and then propagate. Because the order of modulation and transfor-

mation can be exchanged, the real light field in the camera Lr is:

Lr(u) = Lp(u)BA(TFu) = Li(Cz f Fu)BA(TFu), (2.18)

and the spectrum is

Lr(f) = Li(C−T
z f F f)⊗BA(T−T

F f). (2.19)

However, this spectrum cannot be easily expressed because the discontinuities of BA

is not aligned with the principle axes. We resolve this problem by reparameterizing the

light field using the parameterization in Figure 2.2. We use the variables with a widehat

to denote the light field with the in-camera parameterization. For a light field La defined

using the first parameterization with the reference plane at the image plane, it can be

represented as L̂b in the new parameterization. These two light fields are linked by a

linear transformation:

Lb(u) =
1
F

La

 1 0

F−1 −F−1

 u

v

=
1
F

La(PFu). (2.20)

The constant factor 1/F is Jacobian of the transformation6. Again this factor is not

important to the analysis and will be dropped for simplicity.
6The Jacobian of Td and R f are both 1.
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The blocking function BA(TFu) under the in-camera parameterization becomes

B̂A(u) = rect
( v

A

)
=

 1, |v|< A
2

0, otherwise
(2.21)

We can see the discontinuities are along v−A = 0 and v+A = 0, and the spectrum has

a simpler form as in Equation 2.17 now. Therefore, if we reparameterize Equation 2.18,

we obtain:

L̂r(u) = Lp(PFu)B̂A(u)

= Li(Cz f FPFu)B̂A(u)

= Li

 − z
F z(1

z + 1
F −

1
f )

1
F

1
f −

1
F

 u

v

 B̂A(u)

= Li(Ĉz f Fu)B̂A(u) (2.22)

We can see that this light field is the transformed light field modulated with a simple

binary function. The spectrum of L̂r is

L̂r(f) =
1

|det Ĉz f F |
Li(Ĉ−T

z f F f)⊗ B̂A(f)

= FLi

 1− F
f 1

Fz(1
z + 1

F −
1
f ) z

 fu

fv

⊗ B̂A(f). (2.23)

The image captured with the finite aperture is

Ir(u) =
∫

∞

v=−∞

L̂r(u)G(v)dv =
∫

∞

v=−∞

L̂r(u)G(
u− v

F
)dv (2.24)

Again the modulation effect of G is negligible, and the spectrum of the image is:

Ir( fu)≈ [L̂r(f)] fv=0 = [Li(Ĉ−T
z f F f)⊗ (Asinc(A fv)δ( fu))] fv=0. (2.25)

In other words, the spectrum of the 1D image is obtained by first transforming the 2D

spectrum of the light field by Ĉ−T
z f F , convolving it with the aperture blocking function,

and then finally extracting the 1D spectrum along the line fv = 0. We will call this step

slicing operator.

Toy example 4: A example using the setting in Figure 2.7 is given in 2.8. The planar

Lambertian object is at z = 6000, the focal length f of the lens is 50, and the focus plane
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Figure 2.8: Illustration of the image formation process in light field.
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is set at z = 4000 (i.e., F = 1/(1/50−1/4000)). Figure 2.8(a) and (b) show the original

light field Li sampled at the object surface and its spectrum Li, respectively. Because

the surface is Lambertian, the spectrum is a delta function along fv.

Figure 2.8(d) is the light field modified by sequentially using the Tz, R f , TF , PF

and BA operators, and Figure 2.8(e) is the light field L̂r obtained using the combined

photographic operator (Equation 2.22). We can see the light fields obtained by these

two methods are equivalent7.

We can also perform the transform in the frequency domain using Equation 2.23, the

resulting spectrum L̂r is shown in Figure 2.8(c). Compare to Figure 2.8(f), the Fourier

transform of Figure 2.8(e), the transformation is correct.

Finally, we can either obtain the 1D image Ir from the light field using the projection

operator (Equation 2.24), as shown in Figure 2.8(h), or from the light field spectrum

using the slicing operator (Equation 2.25), as shown in 2.8(i). These two results are

almost identical; we can see compare to the original texture function (2.8(g)), the image

is a little blurry due to defocus.

2.4 Interpretation of Photographic Effects

The equations in the previous section describe all processes in photography. In this

section we show how those equations are related to the mathematical models used to

describe the separate photographic effects, such as blurring due to defocus.

2.4.1 Perspective Transformation

It is well known that in the pinhole camera model, a scene point at (x,z) is projected to

(−xF/z) on the image plane8. This projection can be described as a perspective trans-

formation using the homogenous coordinate. Here we show that this effect is already

implicitly embedded in the photographic operator.

First let’s focus on case of the pinhole camera. A pinhole camera has an infinitesi-

mally small aperture, which means A→ 0 and B̂A(u) becomes a delta function of v. Put

7There are some errors due to re-sampling in the simulation process.
8Note that we perform the analysis in the 2D space for now.
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this into Equation 2.22 and 2.24, we have

L̂r(u) = Li(Ĉz f Fu)δ(v) (2.26)

and

Ir(u) = [L̂r(u)]v=0. (2.27)

Put these two equations together then we have

Ir(u) = L̂r

 u

0


= Li

 − z
F z(1

z + 1
F −

1
f )

1
F

1
f −

1
F

 u

0

= Li

 − z
F u

1
F u

 (2.28)

If we assume a diffuse object is at depth z and its surface albedo is defined by a

texture map T (x), then we have Li([u,v]T ) = T (u) and

Ir(u) = T
(
− z

F
u
)
⇒ Ir

(
−F

z
u
)

= T (u) , (2.29)

which is exactly the equation of the perspective transform. In other words, the pinhole

camera captures a specific subset of the light rays, or a slice of the light field. This 1D

slice is stretched on the image plane and the stretch factor is a function of z and F .

Now let’s see a more general case where the camera is a lens camera and the object

is in-focus. In that case, 1/z+1/F−1/ f = 0 and Ĉz f F becomes

Ĉz f F =

 − z
F 0

1
F

1
f −

1
F

 , (2.30)

and put this into Equation 2.22 we have

L̂r(u) = Li

 − z
F u

1
F u+

(
1
f −

1
F

)
v

 B̂A(u). (2.31)

Again, when the object is Lambertian, all light rays reaching u on the image plane come

from the same scene point (−zu/F,z), only the emitting angles are different. In other

words, for a lens camera, when the object is in-focus, the perspective transformation is

still valid.
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A great feature of our analysis is that this conclusion can also be derived in the

Fourier domain. When the object is in-focus, the convolution effect in Equation 2.25

can be removed9. Then we can combine 1/z + 1/F − 1/ f = 0, Equation 2.23 and

Equation 2.25 and obtain

Ir( fu) = Li

 1− F
f 1

0 z

 fu

0

= Li

 (1− F
f

)
fu

0

 , (2.32)

where 1− F
f = F(−1

z ) = −F
z and thus Ir( fu) = Li(−F

z fu,0) = T(−F
z fu). By simple

variable substitution, we have

T( fu) = Ir(−
z
F

fu) (2.33)

We can see that the spectrum of the image is the warped version of the surface texture.

In practice, F << z, and thus a frequency component of the texture function is always

mapped to a higher frequency component on the image. A simple example is that when

a person walk away from the camera (increasing z), the pattern on his/her cloth becomes

denser.

In summary, when the object is in-focus, the shape or the texture of the object is

warped/stretched when reaching the image plane. The stretching factor is uniform and

independent of the angular variation. It only depends on the object depth z and the

camera parameter F . The result is identical to that of the perspective transformation.

2.4.2 Defocus Blur

The defocused objects appear blurry in the image. This is often modeled by a box or

Gaussian filter to the image, where the filter parameters are functions of the depth and

the camera parameters [6]. This filter is also called the point spread function (PSF).

Here we show that this filtering effect is actually a combination of the transformation,

modulation, and projection operators to the light field.

In the analysis above we rely on the forward light transport, here we analyze this blur

effect using the backward transport. In the backward transport, the transformation oper-
9This will be elaborated more in the next subsection. For a pin-hole camera, all objects are in-focus

and thus the following analysis is also valid.
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(b) (c)

z1 = 5010 F = 1/(1/135–1/10010)

(a)

z2 = 10010
z3 = 15010

(d) (e)

(f) (g)

Figure 2.9: The effect of the aperture to the image formation.

(a) The camera and scene setup. f = 135, A = 20 or infinite. (b) The transformed light

field when the aperture size is infinite (L̂p). (c) The transformed light field when the

aperture size is 20 (L̂r). (d) The observed image when the aperture size is infinite (Ip).

(e) The observed image when the aperture size is 20 (Ir). (f) The spectrum of (b) (L̂p).

(g) The spectrum of (c) (L̂r).
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ators including the light ray traveling and refraction are reversed. That is, if L1(Mu) =

L0(u), one can immediately have L0(u) = L1(M−1u) and L0(f) = L1(MT f)10. The

backward representation of Equation 2.14 is

Li(f) = Lp

 1− z
f

1
f

−Fz(1
z + 1

F −
1
f ) 1− F

f

 fu

fv

 . (2.34)

For a Lambertian object like the one in the toy examples, all energies of Li fall on the

fv = 0 slice. Using Equation 2.34, we can see the mapping of these energies is

Li

 fu

0

= Lp

 (
1− z

f

)
fu

−Fz(1
z + 1

F −
1
f ) fu

 . (2.35)

As we have derived in the previous subsection, when the object is in-focus, the energies

fall on the fv = 0 slice again. However, when the object is out-of-focus, 1
z + 1

F −
1
f 6= 0,

then the energy will never fall on the fv = 0 line except the DC term ( fu = 0). As a

result, the spectrum of the image obtained using Equation 2.15 is zero except the DC

term. This means if the object is not perfectly in-focus, it would be totally absent in the

captured image.

This result is contradictory to our daily experience. When something is out-of-

focus, it simply appears blurry in the captured image. The truth is, the blocking effect

due to the finite aperture is the main cause of the defocused blur. In Equation 2.25,

the spectrum is convolved with a sinc function along the fv direction. Therefore, the

slice is spread out along fv. The spread energies touch the fv = 0 and thus appear

on the spectrum of the image. Therefore, the image contains the information of the

out-of-focus objects. In the following, we derive this effect explicitly.

Let L̂p be the light field in the camera without aperture under the in-camera param-

eterization. We first use the backward transport to link L̂p and Li:

Li(f) = L̂p

 − z
F

1
F

z(1
z + 1

F −
1
f )

1
f −

1
F

 fu

fv

 . (2.36)

and again when the Li is defined on a Lambertian surface, the mapping of the energies

10The Jacobian is omitted here for simplicity.
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is

Li

 fu

0

= L̂p

 − z
F fu

z(1
z + 1

F −
1
f ) fu

 . (2.37)

That is, before the convolution with B̂A, the energies fall on the line fv =−F(1
z + 1

F −
1
f ) fu. Therefore, the spectrum of the image given in Equation 2.25 becomes

I( fu) = L̂p

 fu

−F
(

1
z + 1

F −
1
f

)
fu

Asinc
(
−AF

(
1
z

+
1
F
− 1

f

)
fu

)

= Li

 −F
z fu

0

sinc
(
−AF

(
1
z

+
1
F
− 1

f

)
fu

)
, (2.38)

Now we can see that the image is a filtered signal of the stretched surface texture signal.

It should be noted that when the object is in-focus, this equation is identical to

Equation 2.33. Moreover, when the object is out-of-focus, the energy of the object does

not shift in the frequency space. It is only attenuated by the sinc function. This means

when the object is out-of-focus to a lens camera, the perspective transformation is still

valid. While this phenomenon is hard to describe in the image-based approach, we can

easily model it using light transport analysis.

If the texture is a delta function, Li is uniform and so is L̂p uniform. The image

spectrum of this delta function is the frequency response function of the system:

H( fu) = Asinc
(
−AF

(
1
z

+
1
F
− 1

f

)
fu

)
. (2.39)

and the response function is

H(u) =
1

F |1z + 1
F −

1
f |

rect

(
u

AF |1z + 1
F −

1
f |

)
(2.40)

which is exactly the traditional box filter of the defocus blur [25]. The power of an

out-of-focus scene point is uniformly spread to a box of width AF |1z + 1
F −

1
f | on the

image plane. Also note that the signal is stretched according to the camera parameters.

As the depth of the object changes, the degree of blur and the perspective effects also

change. This is explicitly expressed in Equations 2.24 and 2.25.

An example is shown in Figure 2.9. The scene contains three non-overlapping pla-

nar objects and the camera is focused at the middle one. If the aperture size is infinite,
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only the in-focus object will appear in the image, as shown in Figure 2.9(d). Note

that this image is obtained by applying the inverse Fourier transform to the spectrum

obtained using Equation 2.15.

While our derivation is performed in the frequency domain, it can also be performed

in the primal domain. When an object is in-focus, its light field signal will be constant

along v, and the image is simply the scaled version of the texture function. That is, no

blur is introduced. When the object is out-of-focus, a sample on the texture appears

slant in the transformed light field. The range of spread depends on the aperture size,

and it is easy to show that the result will be identical to that obtained in the frequency

domain, and thus identical to the traditional image-based analysis.

Compared to our method, the image-based approaches have several limitations.

They usually assume that the scene is first projected to the image plane using the pin-

hole model, and then blurred using the PSF [6]. However, the box filter is not correct at

the object boundaries, where a pixel is affected by several objects with different depths,

and the box filter is truncated. While there exists a model to describe this case, its an-

alytic form is complex [26]. Additionally, for the scene points occluded in the perfect

pinhole image can contribute to the defocused image, which can not be easily explained

using the image-based models.

For example, suppose that the scene contains three objects, and their depths (z) are

4000, 5000, and 6000, respectively as shown in Figure 2.10(a). The middle object is

totally occluded by the near object. The camera is focused at z = 5000. We can see

that in the transformed light field (Figure 2.10(c)), the middle object is present (appear

white), and thus it contributes to the final image. We can see this effect clearly in Figure

2.10(d), where a peak representing the object at z = 5000 is at the right boundary of the

defocused frontal object.

However, if we start the analysis from the pinhole image (Figure 2.10(e)), the middle

object is totally absent in the image. As a result, no matter how accurate the blur kernel

is, the real image can never be obtained from the pinhole image. This observation

suggests two key points. First, the analysis in the light field space is more accurate

to the occlusion events. Second, if the full light field data is available, we can better
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(b) (c)

z1 = 4000 F = 1/(1/50–1/5000)

(a)

z2 = 5000
z3 = 6000

(d) (e)

Figure 2.10: The effect of the occluded object to the defocused image.

(a) The light field sampled at z = 4000. (b) The transformed light field. The aperture

size is 70. (c) The resulting image. (d) The pinhole image.
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describe the image formulation process.

Another interesting thing is that in the pinhole camera, A→ 0 and B̂A becomes a

uniform function. As a result, the energy at any point is uniformly spread along fv

without any decay. Therefore, all objects are always in-focus. Changing the camera

parameters F only changes the scaling factor of the image, as we have described in

Section 2.4.1.

2.4.3 Vignetting Effect

In the previous analysis, the parameterization function G is ignored. In Equation 2.24,

we can see that the effect of G varies as the image coordinate changes. Suppose that the

input light field Li is uniform, then the resulting image is

V (u) =
∫ A/2

−A/2
G
(

u− v
F

)
dv, (2.41)

where V is the so-called vignetting field. In the traditional image-based method [5], it

is approximated by a cos3 θ decay where θ is defined as

θ =
u
F

. (2.42)

However, this approximation is valid only when the aperture size A is infinitesimally

small 11. It is easy to show that when A→ 0, Equation 2.41 becomes

V (u) = G
( u

F

)
=

1(
1+( u

F )2
)3/2 = cos3(θ). (2.43)

When the aperture size is finite, the vignetting field changes with A. While the

analytic form is tedious, generally speaking, the vignetting field becomes smoother as

the aperture size increases, and eventually becomes flat.

We can also perform the analysis in the frequency domain. When Li is uniform,

only the DC component of the spectrum is non-zero. As a result, according to Equation

2.25, only the DC component of the image will be non-zero and the image will appear

uniform. However, because the light field is modulated by G before the projection

11In the textbook [5], the vignetting field is a cos4 decay field in the 3D space. In the 2D space here,

it becomes a cos3 decay field.
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operation, its spectrum is convolved by G before the slicing operation. Since G is a

function of u, the energy at the DC component will be spread along fu, and thus there

are non-zero energies at other frequency bands.

As shown in Figure 2.6, G is a very smooth function, and thus the degree of the

spread will be very small. In other words, the spectrum of the vignetting field will only

contain extremely low-frequency components. This conclusion matches our intuition.

Again when A→ 0, the result is consistent with the image-based approach.

2.4.4 Summary

We have shown that the models for several photographic effects are implicitly embedded

in Equations 2.22, 2.23, 2.24, and 2.25. The perspective transform of the image is

due to the photographic transformation to the light field, the defocus blur is due to the

modulation of the aperture function and the slicing operation, and the vignetting effect

is due to the modulation of the parameterization function. They can also be equally or

better explained in the frequency domain.

It is easy to see that those effects are all functions of the camera parameters ( f ,A,F)

and the position of the object z. Therefore, we can not adjust the degree of one effect

without affecting others. On the contrary, in the existing image-based analyses, these

effects are usually discussed separately. This means our method is more accurate and

closer to the real device than the existing ones.

2.5 Spectrum Analysis of the Transformed Light Field

We have showed that the energy of the light field from a Lambertian object fall on a

slice along fv = 0 in the frequency domain. The photographic operator maps this slice

to a slice whose slope depends on the object distance and camera parameters. The

image formation process extracts a slice along fv = 0 in the light field spectrum. Many

photographic effects can be easily explained using our formulation in either primal or

the dual (frequency) domain.

In this section, we turn our attention to the full spectrum of the transformed light
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field, which now can be obtained by many light field cameras ( [21], [27], [28] to name

a few). We first show that the digital refocusing operation can be easily derived using

our framework. Second, we show that the spectrum of the light field has a very unique

structure and further exploit this structure for the fusion of all-focused image, and for

the parameter setting of the light field cameras.

2.5.1 Refocusing using Light Field

In [24] it is showed that if we have a light field in the camera, we can generate images

with different focus settings. This refocusing operation can be done efficiently in the

frequency domain by extracting the 1D spectrum along the slice of the object to be

focused12.

While the derivation in [24] focuses on the mathematical theorems and, here we

describe the refocusing operation using the complete light transport work and precisely

link the camera parameters and the refocusing operations together.

Equation 2.18 and 2.19 show that the light field in the camera is a modulation of

a transformed light field and a aperture blocking function. An ideal refocusing system

should allow the users to change all camera parameters, including f , F , and A. Let’s

first focus on adjusting the first two parameters and assume the new focus length is a f

and the new distance between the lens and the image plane is bF . One can use backward

transport to first reverse R f TFPF and then apply the new forward operators to the light

field:

L̂′r(f) = L̂r((R f TFPF)−1(Ra f TbFPbF)f), (2.44)

where the accumulated refocusing operator is

P−1
F T−1

F R−1
f Ra f TbFPbF =

 1
b 1+F

(
1

a f −
1
f

)
− 1

b

0 1

 . (2.45)

Therefore, given the new camera parameters, we can transform the light field using

Equations 2.44 and 2.45 to transform the light field. The spectrum along fv = 0 of the

12In the 3D space, and light field is 4 dimensional and a 1D slice becomes a 2D hyperplane. However,

the concept and derivation are similar to the 2D case we discuss here.
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transformed light field would be the spectrum of the refocused image. One can also use

the backward transport to transform the slicing operator to the original light field. The

backward transport operator of Equation 2.45 is b 0

1−b−bF
(

1
a f −

1
f

)
1

 . (2.46)

As the analysis in Section 2.4.2, the slicing operator will become slant. Therefore,

the spectrum of the image will be

Ir,a,b( fu) = L̂r

 b fu(
1−b−bF

(
1

a f −
1
f

))
fu

 . (2.47)

When this slice overlaps with the energy of a specific object, that object would appear

sharp in the image.

It should be noted that if we further assume a = 1 as in [24], then the accumulated

operator is

P−1
F T−1

F TbFPbF =

 1
b 1− 1

b

0 1

 , (2.48)

which is identical to the result in [24]. In other words, the refocusing operation in [24]

is a simplified version of Equation 2.47.

Changing the aperture size is more difficult than changing other parameters. Since

BA is a binary modulation function, the blocked signals are irrecoverably lost. There-

fore, one can only reduce the size of the aperture in the refocusing operation. However,

since the signal of the light field is very regular, it might be possible to extrapolate the

lost signals.

One can also think of this problem in the frequency domain. The blocking function

convolves the light field spectrum, as described in Equation 2.23. To remove it, we can

apply a deconvolution filter to the spectrum:

L̂p = L̂r⊗−1 B̂A. (2.49)

Since B̂A is a delta function along fu, we can only perform the deconvolution along the

fv direction. That is, the frequency bands with different fu coordinates can be processed
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Figure 2.11: The light field spectrums with and without the aperture blocking function.

(a) The spectrum of the light field transformed by the photographic operator. The scene

contains two objects at different depths. (b) The spectrum of the aperture-free light

field.

independently. However, B̂A is approximately a low-frequency function, and thus many

high frequency (along the fv axis) contents are lost. Therefore, a trivial deconvolution

is ill-conditioned, which can not perfectly recover Lr even when the data is noise-free.

While it is difficult totally remove the effect of the aperture, we can do that to some

degree. One particular application is to generate an all-focused image from the con-

volved spectrum L̂r, as we describe in the following.

2.5.2 Fusion of All-Focused Images

Now we know that for a static scene, the images of different focus settings are equivalent

to the different slices in the light field spectrum. Without loss of generality, we can

assume a = 1 in Equation 2.47 and have

Ib( fu) = L̂r([b fu,(1−b) fu]T ). (2.50)

Let fx denote b fu, we have

Ib

(
fx

b

)
= L̂r

([
fx,

(1−b) fx

b

]T
)

. (2.51)
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This equation means that when we change the refocus parameter b, the frequencies of

the same fu but different fv coordinates are captured by different refocused images.

The aperture blocking function spreads the energies of the light field along fv. As-

sume there are two objects at two different depths z1 and z2, and their initial light fields

defined at the object surface are L1 and L2. Let L̂p,1 and L̂p,2 denote the light field trans-

formed using the photographic operators Ĉz1 f F and Ĉz2 f F , respectively. Then according

to Equation 2.23, we have

L̂r(f) = (L̂p,1(f)+ L̂p,1(f))⊗ B̂A. (2.52)

An example is illustrated in Figure 2.11(a). The combined spectrum is convolved with

the aperture blocking function and thus blurred. Our goal is to recover the spectrum

unaffected by the aperture function, as shown in Figure 2.11(b).

According to Equation 2.37, their energies will fall on two lines with different slopes

in L̂p. If we set b1F = ( f−1− z−1
1 )−1 and b2F = ( f−1− z−1

2 )−1, and apply them to

Equation 2.51, we have

Ib1

(
fx

b1

)
= L̂r

([
fx,

(1−b1)
b1

fx

]T
)

, (2.53)

Ib2

(
fx

b2

)
= L̂r

([
fx,

(1−b2)
b2

fx

]T
)

. (2.54)

We can see that by properly stretching spectrums of the refocused images, their fre-

quency components map to those with identical fu coordinate and different fv coordi-

nates.

According to our analysis in Section 2.4.2, we know that because of the convolution

of B̂A along fv, the defocused object is present in the image. The decay of the energy

depends on the fv coordinate of the mapped slice in L̂r. In the case of refocused image,

the analysis is still valid with slight modifications. In image Ib1 , the object at z1 is well-

focused, and vice versa. The decay of the energy now becomes the difference of the

fv coordinates of these two slices. Let b12 denote (1− b1)b−1
1 − (1− b2)b−1

2 , and by

Equations 2.38, 2.52, Equations 2.53 and 2.54 become:

Ib1

(
fx

b1

)
= L̂p,1

([
fx,

(1−b1)
b1

fx

]T
)

+ L̂p,2

([
fx,

(1−b2)
b2

fx

]T
)

sinc(Ab12 fx),

(2.55)
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Ib2

(
fx

b1

)
= L̂p,1

([
fx,

(1−b1)
b1

fx

]T
)

sinc(Ab12 fx)+ L̂p,2

([
fx,

(1−b2)
b2

fx

]T
)

.

(2.56)

We can re-write these two equations together in a matrix form. Removing all frequency

indices in I and L̂ for simplicity, we have: I1

I2

=

 1 sinc(Ab12 fx)

sinc(Ab12 fx) 1

 Lp,1

Lp,2

= Mb12

 Lp,1

Lp,2

 . (2.57)

Therefore, we can see that when there are two objects at different depths, the refocused

images, or the equivalent samples in the light field after the convolution of the blocking

function, are the linear combination of the aperture-free light field. As a results, as long

as Mb12 is invertible, we can recover the aperture-free light field, which is impossible to

capture using a physically limited device.

Whether Mb12 is invertible depends on fx and b12. When fx = 0, the condition num-

ber of Mb12 is infinite, which means we cannot recover the individual DC components

of two objects from two refocused images. The conditional number decreases as fx and

b12 increase. This means that it is easier to separate two light fields at high frequencies,

or when the distances between these two objects are large. However, at a reasonable

spectrum resolution, Mb12 is always invertible except at the DC term.

If we only attempt to generate an all-focused image, we can perform the inversion of

Equation 2.57 at all frequencies but the DC term. Then we can combine the recovered

Lp,1 and Lp,2, and take the DC term of either I1 or I2. The spectrum generated in this

way contains both L1 and L2, and thus the image is all-focused.

The analysis we present can be easily generalized to multiple objects. The matrix M

in Equation 2.57 would become N×N when dealing with N objects at different depths,

but the condition number still follows our analysis: higher frequencies lead to easier

inversion and the individual DC terms can never be recovered. Several examples can be

found in Figures 2.17 and 2.18.

In [29] an image-based approach with a similar goal is derived. However, its deriva-

tion is painstaking because the relation we showed in the light field domain cannot be

easily characterized in the image domain. The algorithm in [29] requires several decon-

volution passes and has convergence issues. On the contrary, our method is very easy
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to explain in the light field spectrum domain. Different frequency bands (with different

fu coordinates) can be solved independently, each by a single matrix multiplication.

2.5.3 Parameter Settings for Efficient Light Field Sampling

The spectrum of the transformed light field has several unique properties. First, for

Lambertian scenes, the energies concentrate on a 1D slice. Second, the slices of dif-

ferent objects have different slope in the transformed light field as shown in Equation

2.37. Here we discuss how to specify the camera parameters to efficiently sample the

light field.

We use a simple example to start our analysis. Suppose that the scene contains

three object at z1 = 3000, z2 = 5000, and z3 = 10000, respectively. We also assume the

bandwidth of the texture functions on those objects are the same. We set f = 50 and

vary the focus setting F to obtain the transformed light field, as illustrated in Figure

2.12.

We can see that when F is specified such that zin = zi, the energy slice of the cor-

responding object falls on fv = 0, and thus it can be perfectly recorded by the slicing

operator given in Equation 2.25. Also note that the Nyquist sampling rate along the fu

axis depends on the focus setting. When the in-focus object is the nearest one (Figure

2.12(c)), the sampling rate can be smaller than the case when the in-focus object is

the farthest one (zin = z3). This is because a specific frequency component on the far

object is mapped to a higher frequency in the light field spectrum transformed by the

photographic operator than that on the near object.

For light field cameras, we also have to sample along the v axis (the aperture plane).

According to the sampling theory, the Nyquist rate is twice of the bandwidth. At the

first glance, the spectrum in Figure 2.12(e) has the minimal bandwidth along fv and

thus requires minimal sampling rate.

However, the shape of the light field spectrum is very unique. We can see that it

is like a laid sandglass (two symmetric wedges sharing a single vertex at the origin),

as shown in Figure 2.13. If we measure the effective bandwidth of the spectrum and

perform the sampling, we can see that the required bandwidth is much smaller than
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(a) Zin = 100, F = 100 (b) Zin = 2000, F = 51.28205

(c) Zin = 3000, F = 50.84746 (d) Zin = 5000,F = 50.50505

(e) Zin = 10000, F = 50.25126 (f) zin = ∞, F = 50

z = 3000

z = 3000

z = 10000

200 390

393.33 396

398 400

198 8

4.66 2

1.4 2

fu

fv

Figure 2.12: The spectrum of the light fields under different focus settings.

The camera setting are given with the indices, and the bandwidth along fu and fv are

given in the Figures.
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(a) Zin = 100, F = 100 (b) Zin = 2000, F = 51.28205

(c) Zin = 3000, F = 50.84746 (d) Zin = 5000,F = 50.50505

(e) Zin = 10000, F = 50.25126 (f) zin = ∞, F = 50

fT = 0 fT = 0.7

fT = 0.7 fT = 0.7

fT = 1.4

fT = 0.7

Figure 2.13: The minimal sampling rates along the fv axis.
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(a) (b) (c) (d)

Original spectrums Repeated spectrums 
due to sampling

Repeated spectrums 
due to non-axis-
aligned sampling

Figure 2.14: The relation of the sampling rate and the focus settings.

The perform sampling along the v axis and thus the spectrum of the light field would

repeat along the fv axis. (a) The focus plane is within the depth range. (b) The focus

plane is at the most frontal object. (c) The focus plane is in front of all objects. (d)

Higher spectrum packing using non-axis-aligned sampling.

the Nyquist rate. In this case, the spectrum in Figure 2.12(e) on contrary requires the

highest sampling rate. When the camera is focused extremely close to the lens, all slices

will overlap together, and the Nyquist rate becomes zero. However, this situation may

be undesirable for many applications, such as digital refocusing.

The analysis above assumes the bandwidth of the surface texture is limited. In real

case, the texture function is usually unlimited. The general rule is adjust the focus plane

to be extremely close to the lens or to infinity, as illustrated in Figure 2.14. When the

focus plane is set within the depth range of the scene, the energies are distributed in all

quadrants in the frequency space, and thus the minimal effective bandwidth is at most

half of the bandwidth. However, once the focus plane is set outside the depth range, the

energies are always within two of four quadrants. As a result, the efficient bandwidth

can be much smaller. The price of the efficient sampling is that a non-axis-aligned

reconstruction filter must be applied. However, for many applications such as digital

refocusing, reconstruction of the full light field is unnecessary.

If the non-axis-aligned sampling scheme is allowed, one can utilize the sandglass
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Figure 2.15: Definition of the depth detection problem.

Three objects located at three planes perpendicular to the z axis (optical axis of the

camera). Our algorithm finds the depths of these planes as marked by the three dots.

structure to achieve a even tighter energy packing, as shown in Figure 2.14(d). However,

for the light field cameras, especially for the proposed programmable aperture camera

in the next Chapter, the available sampling rate along the u axis is usually very high,

and hence this complex sampling scheme is unnecessary.

While the efficient sampling of the light field has been presented in [11], here we

successfully link it to the camera parameters. A similar conclusion about the parameter

setting according to the complex geometric optics is given in [30].

2.6 Depth Detection of Light Field

We have showed that the energies of the objects at different depths are located at dif-

ferent 1D slices in the 2D frequency domain. Also these slices can be extracted by the

refocusing operator defined in Section 2.6.4. For the slice without object, it only con-

tains the energies spread from the slices with objects due to the convolution of B̂A as

described in Equation 2.23.

Because B̂A has only one global peak at the original, all spread energies are always

smaller than original ones. Therefore, the powers of the slices containing object should

be much higher than those containing no object. This effect is particularly obvious in

the high frequency bands since B̂A decays very fast.

In the following we develop an efficient depth detection algorithm based on this

concept. Instead of finding the depths of different regions in the scene, we extract the
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depths of different planes at which objects are located. In other words, for a scene with

objects located at (x,y,z)’s, we find the z’s of the objects without solving for their x and

y positions. Figure 2.15 illustrates this idea. As described later, the proposed method is

very useful for many applications. This work was first presented in [31]13.

Our proposed method is quite different from traditional auto-focus (AF) algorithms

in two ways. First, AF algorithms only determine a best focus value for a specific

region, but our algorithm detects all depths. Second, AF algorithms are image-based,

which usually use several heuristics to measure the sharpness of the image. One the

contrary, since we have a completed 4D light field so we can estimate the depths more

precisely.

2.6.1 Overview

We say that the focusness of a depth is high if there is some object located at this depth.

We first describe the proposed measurement for the focusness. This measurement is

a weighted energy ratio of different frequency bands in the spectrum of the refocused

images. It can be evaluated easily from the light field spectrum.

However, objects such as grounds or forests may spread over a wide range of depths

in a real scene. Therefore, we re-formulate our objective function to address this issue.

2.6.2 Focusness Measurement

We directly extend our analysis above to the 3D cases and the coordinates on the lens

plane and the image plane are (u,v) and (x,y), respectively. Therefore, according to

Equations 2.47 and 2.48, we have14:

Ib( fx, fy) = L([(1−b) fx,(1−b) fy,b fx,b fy]T ). (2.58)

When there is an object located at the plane of depth z = ( f−1−bF−1)−1, the high

13This possible utilization of the light field analysis was mentioned in [24] as a Fourier range finder

but was never developed in the past.
14The subscript r and widehats are removed below for simplicity since the real data is always modu-

lated by BA
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frequency component of this spectrum should be larger than those of the other slices

which have no object in focus.

To reduce the computation, only the energy along fx and fy axes is taken into ac-

count. That is, we extract two 1D spectrums from Ib:

Ix
b( fx) = L([(1−b) fx,0,b fx,0]T ),

I
y
b( fy) = L([0,(1−b) fy,0,b fy]T ), (2.59)

and then calculate the power spectrum Pb( f ):

Pb( f ) = (Ix
b( f ))2 +(Iy

b( f ))2. (2.60)

The direct summation of Pb( f ) over the whole spectrum (total energy) is not a good

measurement of focusness for mainly two reasons. First, changing b does not much alter

the energy of low frequency components. Only the details (high frequencies) are lost

when the object is out-of-focus. Second, noise and aliasing may dominate the energy at

high frequencies near the Nyquist rate.

To alleviate these problems, we use a multi-band processing method. The power

spectrums Pb( f ) is split equally into 8 bands. Denote the energy in these 8 bands by

E0(b), E1(b),...,E7(b). The high bands E1-E6 are emphasized with proper weighting,

and their summation are normalized by the lowest band E0. The highest band E7 is

ignored since it contains mostly noise. Denote the measurement of focusness by G(b):

G(b) =
1

logE0(b)

6

∑
i=1

wi logEi(b). (2.61)

We tried many different settings of wi and found that wi = i gives the best results.

2.6.3 Detection as Optimization

Figure 2.16(a) and (b) show the plots of G over b for our two synthetic datasets, which

are designed for two extreme cases. It is obvious that G(b) is high when there is some

object at depth b15. However, simple local or global maximum detection may not result

in good selection.

15We can related b to the real depth using the lens equation.
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(a) Global-maximum detection (b) Global-maximum detection 

 
(c) Local-maximum detection (d) Local-maximum detection 

 
(e) Proposed detection (f) Proposed detection 
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Figure 2.16: Detected depths of the two datasets using different methods.

(a)(b) global-maximum, (c)(d) local-maximum, and (e)(f) our proposed algorithm. The

circles denote the selected depths, the squares are the neighboring depths, and the

dotted segments are the partially focused regions.
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Figure 2.16(a) shows the G of dataset 1 with completely discrete depth distribution.

The objects in this space are located at three planes with b = 0.93, 0.99, and 1.07. The

curve shows three local peaks exactly at these points. On the other hand, Figure 2.16(b)

shows the G curve of dataset 2 with a continuous distribution of depths. The objects

spread a range of depths from b = 0.97 to 1.03. The G’s in this range are globally higher

than those in others, but there is only one peak.

These two extreme cases reveal that simple depth-detection algorithms solely based

on local-or global-maximum detection would not work. That is, if we take local max-

imums as the output, we can succeed in the discrete-depth case, but fail to handle the

continuous-depth case. On the contrary, the global maximum detection works well in

the continuous-depth case, but not in the discrete depth one.

Note that when there is an object at b, G(b) is larger than its neighbors. In addition,

the neighboring G’s are also affected by this object. This effect should be taken into

account. Instead of finding global or local maximums, we try to solve the following

maximum-cover problem:

Maximum-Cover Problem:Given depths b1, b2,...,bN , and corresponding G fac-

tors G1, G2,...,GN , find K indexes D1, D2, ..., DK such that

∑
i=1

K(λGi−1 +Gi +λGi+1) (2.62)

is maximized, under the constraint that the selected Di are separated by at least 3. The

parameter λ is between 0 and 1.

The constraint is to ensure that the neighbors of every selected depth do not overlap

to the neighbors of other selected depths. In our experiments the λ is set to 0.5 and K is

set to 3. This problem can be solved efficiently by dynamic programming.

2.6.4 Experimental Results

We first perform experiments using the previous synthetic datasets so the exact depths

of the objects are known. The resolution for these dataset is 16×16×256×256. For

Equation 2.59, spectrum is re-sampled by a Kaiser-Bessel filter with width 2.5. For

Equation 2.62, N is set to 21, corresponding to b = 0.90, 0.91, ...,1.10.
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(a) b=0.93 (b) b=0.99 (c) b=1.07 (d) all-focused 

 

(e) b=0.97 (f) b=1.00 (g) b=1.03 (h) all-focused 

 

Figure 2.17: The refocused and all-focused images from the synthetic datasets.

b denotes the detected depths and all-focused images are generated from the synthetic

aperture photographs without human interaction.

Then we perform similar experiments using real dataset captured by programmable

aperture camera described in Chapter 3. The depth distribution of this dataset is neither

completely discrete nor completely continuous. Instead, it is composed of an object

located at b=0.97 and a region of objects through b=1.01 to b=1.04. The resolution of

this dataset is down-sampled to 4×4×256×256.

The resulted G curves of the two synthetic datasets are shown in Figure 2.16. The

global-maximum method fails when the depth distribution is discrete, since the object

at 1.07 also pulls up G(1.06), as shown in Figure 2.16(a). On the other hand, the local-

maximum method fails when the depth distribution is continuous, as shown in Figure

2.16(d). There are objects distributed from 0.97 to 1.03, but only G(0.99) is a local

peak. For both cases, our proposed algorithm works well.

Using the detected depths, we can automatically generate the synthetic aperture

photos, as shown in Figure 2.17 (a-c) and 2.17 (e-g). The results on real dataset are

presented in Figure 2.18. Our algorithm successfully selects the depths where objects

are located at.
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(a) b = 0.97 (b) b = 1.01 

 
(c) b = 1.04 (d) all-focused 

 

Figure 2.18: The refocused and all-focused images from the real dataset.
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Using the fusion technique presented in Section , we can generate all-focused im-

ages, as shown in Figure 2.17 (d) and (h), and Figure 2.18 (d). The little ghosting effect

is due to aliasing. Thanks to the proposed depth detection algorithm, we do not have

to manually specify the object depths as it was in the analysis. We also do not have to

resolve the per-pixel depth maps to fuse the refocused images. All operations can be

efficiently done in the frequency domain.

2.6.5 Complexity

Calculating the G factor for each depth takes O(S), where S is the width (or height) of

the image. Calculating N factors takes O(NS). Our selection algorithm takes O(NK),

so the total time cost is O(NS + NK) and dominated by O(NS). Compared with the

FFT for obtaining L, which takes O(S4 logS), and the IFFT for refocused photo, which

takes O(S2 logS), the complexity of our algorithm is negligible.

In our experiment, 4D FFT takes 10 seconds, but we can pre-calculate it only once.

For some scenario where the 4D FFT is redundant or undesirable, we can use a different

approach to evaluate Equation 2.59. In Ix and Iy, two of four dimensions are simply

DC components, which can be easily extracted by the projection operator. Therefore,

we can generate two 2D signals Iux, Ivy by projecting the 4D signal along v,y and u,x

axes respectively. Ix and Iy can be obtained from the 2D FFT of Iux and Ivy.

Our experiments were performed on a PC with Pentium-4 3GHz CPU and 1GB

RAM. Generating each refocused image takes 1 second and the all-focused image takes

3 seconds. Our depth detection only takes 0.25 seconds.

2.7 Discussion

In this section we discuss the possible extensions and applications of the present light

transport framework.
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2.7.1 Extension to the 3D Space

While our analyses are performed in the 2D space, it is straightforward to extend them

to the 3D space (where the light field becomes four dimensional). For certain operators

such as surface shading, the Fourier transformation must be replaced with the spherical

harmonics [14]. Fortunately, most operators we use, including light ray traveling,

lens refraction, and reparameterization, can be easily mapped to the 4D light field by

simply including two additional coordinates to the equations. One coordinate defined

on the U plane is orthogonal to the u axis and the other defined on the V plane is

orthogonal to the v axis. Therefore, we can use our framework to map the light field

into the camera. Also, because the range of the angular axis is seriously truncated by

the aperture blocking function, unlike the case in the camera array that spans a large

angular range, we can assume the scene is Lambertian for a single camera (or light field

camera).

An interesting thing is that in practice, the camera parameters can be different in

different axes. For example, the focal length of the lens may be direction-variant, and

thus the refraction Equation 2.6 becomes:

L1





u

v

s

t




= L0





1 0 0 0

f−1
u 1 0 0

0 0 1 0

0 0 f−1
s 1





u

v

s

t




, (2.63)

where s and t are the new coordinates in the 4D space and fu and fs are the focal

lengths along the u and s axes, respectively. As a result, when an object is in-focus in

one direction, it would be out-of-focus in others. This is actually the basic model for the

astigmatic effect. In fact, the variation of each entity in Equation 2.63 or in the overall

photographic operator maps to a specific effect in the optics system. For example, if F

is different in two axes, the image plane is skewed. A mathematical framework of these

variations is presented in [32], which does not link the equations with the physical

property of the camera like we do. Combine our analysis with that in [32], it may be

possible to design new optics for novel imaging applications.
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2.7.2 New Aperture Design

We have shown that the effect of the aperture is the spread of energies in the frequency

domain. While for the traditional aperture, the spread energies are always decayed, it

may be possible to design new aperture to amplify the energies. For example, if B̂(f) =

f 2
v δ( fu), then all frequency components are always amplified in the image spectrum.

However, the aperture has its physical limitation, such as it can neither negative the

light rays nor amplify them.

One can on the other hand change the objective. For example, in [21] the low-pass

aperture function is replaced with an all-pass one so the deconvolution becomes well-

posed. In [33] the aperture is designed such that the PSF for each depth is very distinct

from those for others. Other application-specific designs could possibly be found using

our framework.

2.7.3 New All-Focused Fusion Method

We have presented an all-focused fusion method and a new depth-detection method.

While both of them can be efficiently in the frequency domain, it may be possible to

combine them into a single one.

When the angular sampling rate is high, the number of the possible depths is always

much fewer than the angular samples. Also, the samples of the aperture-free light field

axis is very sparse along the fv. Therefore, one may re-formulate Equation 2.57

Lp = argmin(Lr−MLp)
2 +λ|Lp|p, (2.64)

where Lr are the frequencies in the observed light field of a specific fu band, Lp are

the corresponding frequencies in the aperture-free light field, and M is the convolution

matrix generalized from Equation 2.57. We use the Lp norm to enforce the sparseness of

the Lp
16. Therefore, if this objective function can be minimized, we can simultaneously

solve the depth detection and all-focused problems. To make it more robust, the inter-

frequency continuity could be considered.

16For the definition of the sparseness, please refer to [34].
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2.8 Summary

In this chapter we have presented a complete framework for analyzing the light trans-

port effect in photography. We have shown that the photographic effects result from the

combination of the transformation and modulation of the light field, and these opera-

tions can be expressed by a single equation. All the operations can be easily mapped to

the frequency domain, and the photographic effects can therefore be explained in a new

way.

We have applied the spectrum analysis of the light transport to many applications,

including digital refocusing, fusion of all-focused images, and parameter setting for the

light field cameras. A novel depth-detection algorithm based on the analysis is also

proposed. It can efficiently find possible object planes without performing per-pixel

depth estimation.

The proposed framework explains many photographic effects and has many poten-

tial applications beyond the ones we have presented in this chapter. We hope it can

inspire more researches in light transport analysis and image formulation.



Chapter 3

Light Field Acquisition

In the chapter, we propose a complete to acquire high quality light field data. After a

brief review of the previous work, we describe a novel device, called programmable

aperture, for light field acquisition. The programmable aperture is much more flexible

and inexpensive than the previous devices. It can capture the light field with the spatial

resolution identical to the sensor resolution, and with an adaptive angular resolution.

We then present two new post-processing algorithms to address inherently distor-

tions. The first algorithm can automatically estimate and calibrate the photometric dis-

tortion of the light field. The second algorithm can infer the scene geometry from the

light field1.

3.1 Previous Work

The programmable aperture is inspired by several previous techniques for computa-

tional photography and light field acquisition. Here we describe the most relevant ones.

Please refer to [36], [37], [38], [39], [40] for the complete survey.

3.1.1 Light Field Acquisition

Light field is a four dimensional signal which cannot be directly captured by a 2 dimen-

sional sensor array. The simplest method moves a single camera over a 2D manifold

1The content in this chapter was presented in [35], [28].
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to capture the light field sequentially. The position of the camera on the manifold can

be controlled precisely using a camera gantry [3], or estimated from the captured im-

ages by structure-from-motion (SFM) algorithms [4], [41]. This method is very slow

because the position of the camera or the object has to be altered before each exposure.

Either gantry or the SFM algorithm only works well in a controlled environment.

The second method captures the dynamic light field by putting numerous cameras

into a camera array [42], [43], [44]. Each camera can capture a subset of the light field

at video-rate. Although this method can acquire high quality light field, the camera

array and its back-end control and storage machine are very cumbersome and expensive.

The third method, which is most related to ours, inserts an optical light ray repa-

rameterizer into the camera to avoid the angular integration operation we mentioned

in Chapter 2. This ideas dates back nearly a century ago, termed integral photography

or parallax panoramagrams, and are realized using either a fly-eye array [45] or a slit

plate [46], [47].

Recently compact implementation and theoretical analysis were paid much atten-

tion. In a plenoptic camera, for example, a microlens array is placed at the image plane

inside the camera [48], [27]. The resulting tiny image behind each microlens records

the angular resolution of the light rays, while in the integral photography, the image be-

hind each microlens records the spatial distribution. Veeraraghavan et al. replaced the

split plate with a cosine-mixture mask to improve the light-collection efficiency [21].

They also showed that this operation is in fact a modulation of the light field, and that

the heterodyned light field can be recovered by demodulation. Using the light trans-

port theory, the reparameterizers inside the camera can be replaced by those outside

the camera with equivalent effects [49], [22]. This can possibly make a better tradeoff

between the spatial and angular resolutions.

However, no matter which reparameterizer is applied, the principle of those devices

are the same: manipulating the 4D light field spectrum by modulation or transformation

to make it fit in a 2D sensor slice. Therefore, all these devices share the following draw-

backs. First, the spatial resolution, or the spectrum bandwidth along the spatial axis, is

traded from the angular resolution. To capture a 3 megapixel photo with reasonable
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angular resolution, like 5-by-5, would require a sensor array with 75 million sensors,

which is still very difficult, if not impossible, to make in the near future.

Second, inserting masks or optical elements in a camera automatically imposes a

fixed sampling pattern. The angular and spatial resolutions cannot be changed unless

the component is replaced. These components are usually permanently installed and

cannot be easily removed from the camera to capture regular images. Third, the repa-

rameterizers inside the camera must be made accurately at micrometer scale. Therefore

they are usually very expensive and require elaborate calibration2.

3.1.2 Coded Aperture Imaging

The coded aperture technique is one of the most useful tools in computational photog-

raphy. In the beginning, this technique was used to improve the data quality for X-ray

astronomy [50], [51]. Then it is found that many other applications can be achieved by

modulating the light rays in a controlled way using the coded aperture. For example,

the exposure time can be modulated by a coded aperture to preserve the high spatial

frequencies in the motion blurred photo and make the debluring process well-posed

[52]. Similar concept is also applied to remove the refocused blur [21]. One can also

capture high-dynamic-range or multi-spectral images with spatially variant exposure

control [53], [54]. The field-of-view of the image can be split by using a volumetric

light attenuator [55] and the stereoscopic images can be captured by a single static

camera [56]. A color-filter aperture can be used to generate inter-channel parallax cue

in a single exposure [57].

One particularly relevant work uses a coded aperture to improve the performance

of the depth-from-defocus algorithm [33]. The pattern on the aperture is designed

such that the ambiguities between the blur kernel of different scales are minimized. It

is demonstrated that the rough geometry of a near-Lambertian scene can be estimated

from a single image. In contrast, our method directly captures the complete 4D light

field and estimates the depth from it when necessary.

Several concurrent projects discussed in Section 3.2.6 also use the concept similar

2For example, the microlens array used in [27] costs US $1500 dollars.
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to our programmable aperture.

3.1.3 Multiple-Exposure Imaging

Another techniques commonly adopted in computational photography is the multiple-

exposure technique. The basic concept is to capture the scene several times sequen-

tially, or simultaneously by using beam splitters and camera arrays. At each exposure

a subset of the imaging parameters, such as lighting or viewpoint, are made different.

Then a novel image or other additional information (e.g., alpha matte), is obtained by

computation. Some applications include depth-edge detection and NPR rendering [58],

matting estimation [59], flash/non-flash image enhancement [60], [61], noise/blurred

image restoration [62], and so forth.

It should be noticed that due to the rapid exposure ability of the digital sensors, many

techniques mentioned above can be easily implemented on the commercial cameras.

For example, Senkichi et al. split a given exposure time into a number of time steps and

sampled one image in each step. These images are then registered into a single clean,

blur-free image [63].

3.1.4 Illumination Multiplexing

Capturing and analyzing the appearance of a scene under different lightings is an active

topic for image-based rendering and computer vision. Since the dimension of the signal

(a 4D incident light field or an 8D reflectance field) is much higher than that of the

sensor (a 2D photo sensor array), the signal must be captured sequentially, one subset

at a time. One can multiplex several subsets of the signal together in each exposure,

and then recover the individual subsets by computation [64], [65].

The proposed programmable aperture makes it possible to capture a subset of the

light field inside the camera at each exposure. Therefore, the multiplexing technique

can be naturally introduced and thus the signal-to-noise ratio of the captured light field

can be significantly increased.
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Figure 3.1: Sequential light field acquisition using the programmable aperture.

3.2 Programmable Aperture

In a traditional camera one can only adjust the size of the aperture to adjust the depth of

field (DOF) of the photo. However, the captured photo is always a 2D projection of the

3D scene, or the 2D projection of the 4D light field. That is, the angular information (in

our case, the signal variation on the aperture plane) is irrecoverably lost.

However, if we modify the shape of the aperture so that only the light rays arriving in

a small specified region of the aperture can pass through the aperture can pass through

the aperture, we can avoid the angular integration. More specifically, if the aperture

blocks all light rays but those around a specific point v0, the transmittance of the aperture

T (v) can be described as

T (v) =


1 if ‖v− v0‖< w

0 otherwise
, (3.1)

where w is the width of the aperture. Put this into Equation 2.24, we have

Iv0(u) =
∫

∞

−∞

L(u,v)T (v)dv =
∫ v0+w

v0−w
L(u,v)dv. (3.2)

We can see that if w→ 0, I(u) = L(u,v0), and the captured image is a subset of the light

field. If w > 0, the captured image is equivalent to a subset of the filtered light field.

Specifically, the light field is filtered by a box filter of width w, and then sampled by the

sensor array. In the following, we call Iv as a light field image.

3.2.1 Sequential Light Field Acquisition

By capturing images with different aperture shapes, as shown in Figure 3.1, we acquire

a complete light field. Note that unlike previous devices that manipulate the light rays
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after they enter the camera [27], [21], [22], our method blocks all undesirable light rays

in the very beginning and leaves a subset of light field to be sampled. Thus the spatial

resolution of the light field is the same as the sensor resolution. For the method to take

effect, a programmable aperture is needed. Its transmittance T (v) has to be spatially

variant and controllable.

One may think that the programmable aperture can be trivially implemented by re-

placing the lens module with a volumetric light attenuator [55]. However, according to

our light transport analysis in Chapter 2, removing the lens would significantly increase

the bandwidth of the light field along the angular axis and thus we need to capture more

images. In other words, the lens can bend the light rays and consequently compress the

spectrum. Therefore, by carefully selecting the in-focus plane and lens module, we can

properly reshape the spectrum to reduce aliasing, as described in Section 2.5.3. That is

also the reason why most light field cameras preserve the lens module.

3.2.2 Light Field Multiplexing

A light field with angular resolution Na requires Na exposures, one for each vi. Compare

with traditional photography, the light-collection efficiency is decreased because only

a small aperture is open at each exposure (the size of the aperture should be less than

the sampling grid) and each exposure time is only 1/Na of the total acquisition time.

As a result, given the same acquisition time, the captured images are noisier than those

captured by conventional cameras.

To solve this problem, we multiplex the light field images at each exposure. Specif-

ically, one can aggregate multiple light field samples at each exposure by opening mul-

tiple regions of the aperture. Because the radiances of the light rays are additive, the

individual signals can be recovered afterwards.

At each exposure, the captured image Mv is a linear combination of Na light field

images (Figure 3.2):

Mv(u) =
Na−1

∑
k=0

wvkIk(u), (3.3)

where Ik(u) is defined in Equation 3.2 and wvk is the weight of each light field images

in the current exposure. Due to the physical limitation, we cannot amplify the power
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Figure 3.2: Multiplexing the light field by using the programmable aperture.

of light rays or generate a negative light rays, and thus wvk ∈ [0,1]. The weights for

a single exposure can be represented by a vector wv = [wv0,wv1, ...,wv(Na−1)] and is

referred to as a multiplexing pattern since wv is physically realized as a spatially variant

mask on the aperture plane. After Na exposures with Na different multiplexing patterns,

we can recover the light field by demultiplexing the captured images. Specifically, all

captured samples at the same pixel location can be represented by a Na-D vector m(u) =

[M0(u),M1(u), ...,MNa−1(u)] and similarly all true light field signals at the spatial index

u can be represented by i(u) = [I0(u), I1(u), ..., INa−1(u)], then we have

m = Wi, (3.4)

where W is an Na×Na matrix and each row of W is a multiplexing pattern wv. The

demultiplexing process recovers I by

i = W−1m. (3.5)

We can see that W must be invertible to make the demultiplexing feasible.

By intuition, we should one as many as regions as possible (i.e., maximize ‖wv‖) to

allow the sensors to gather as much light as possible. In practice, however, noise always

involves in the acquisition and complicates the design of the multiplexing patterns. In

the case where the noise is independent and identically-distributed (i.i.d.), Hadamard-

code based patterns are best in terms of the quality of the demultiplexed data [66], [64],

[35].

However, for digital sensors, including CCD and CMOS, the noises are often cor-

related with the input signal and the camera parameters [67], [68]. For example, the

variance of the shot noise grows linearly with the number of the incoming photons and

the variance of the dark current noise grows linearly with exposure time. In this case,
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Figure 3.3: The noise characteristics of Nikon D70 DSLR.

The variance of the noise grows linearly with the intensity. The blue points are the

observed variances and the black line is the fitted noise model.

using the Hadamard-code based patterns actually degrades the data quality [65]. An-

other drawback of the Hadamard-code based patterns is that they only exist for certain

size (i.e., only certain Na).

Instead, we search for the optimal multiplexing patterns according to the noise char-

acteristics of the camera. According to [66], the mean-square-error (MSE) of the re-

covered signal from demultiplexing (Equation 3.5) is:

MSE =
σ2

Na
Trace((WT W)−1), (3.6)

where σ2 is the variance of the noise in the measured signal (m). The variance depends

on the input signal and the camera parameters and can be approximately modeled by

two components. The first one σ2
c is a constant value and the second one σ2

p is pro-

portional to the received irradiance of the sensor. Let σ2
0 be the variance of the second

noise when the received irradiance value is one unit.

σ
2 = σ

2
c +σ

2
p = σ

2
c +Pσ

2
0. (3.7)

Both σ2
c and σ2

0 are measured as follows. We fix the camera in front of a LCD screen.

The screen display an achromatic intensity ramp (both devices are linearized). We then

capture 20 images of the screen and take the average of those images as the ground truth

image. The variances of the signals of different intensities are then obtained and then
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σ2
c and σ2

0 are estimated by a simple least-square fitting. One result is shown in Figure

3.3. Given the model, the MSE becomes

MSE =
σ2

c +Pσ2
0

Na
Trace((WT W)−1). (3.8)

The intensity of the multiplexed signal m depends on not only the multiplexing pattern

W but also the real light field signal i. Since the latter term is dynamic, we fix it as

the middle of the dynamic range. We also assume the effective transmittance of the

multiplexing pattern is fixed (i.e., ‖wv‖ is a constant ‖w‖ for all v). Then the MSE will

only depend on the chosen multiplexing patterns:

MSE =
σ2

c +‖w‖σ2
0

Na
Trace((WT W)−1). (3.9)

The optimal multiplexing patterns should minimize Equation 3.9. There are two meth-

ods to perform the minimization. When the angular sampling rate is small (like less than

20) and the patterns are binary (i.e., wvk ∈ {0,1}), the optimal W can be obtained by a

simple brute-force search. The solution obtained is guaranteed to be globally optimal

under the given constraints and assumptions.

When the desirable angular sampling rate is large, since the constraints are convex

and Equation 3.9 is differentiable, the minimization can be formulated as a constrained

convex optimization problem and solved by the projected gradient method, as described

in [69]. We surprisedly find that most entities in the multiplexing patterns thus obtained

are very close to zero or one, and therefore we enforce them to be binary. This is because

the binary masks can be made more accurately in practice. The MSE is only slightly

affected (less than 0.1%).

The exact quality improvement due to multiplexing depends on many factors, such

as the light field signal of interest. Therefore the MSE of the demultiplexed is spatially

and angularly variant. However, on average, the MSE is reduced by a factor of O(
√

Na)

by using the optimal multiplexing. Two results are shown in Figure 3.4 and 3.5. We can

clearly see the demultiplexed light field is much better than the one captured without

multiplexing.
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(a) (c)(b)

Figure 3.4: Performance improvement by multiplexing (1/2).

(a) Light field image captured without multiplexing. (b) Demultiplexed light field im-

age. (c) Image captured with multiplexing. The insets in (a-c) show the corresponding

multiplexing patterns. (Bottom row) Close-up of (a) and (b). The angular resolution is

3 by 3 and the total exposure time is 90ms for both cases.

3.2.3 Prototypes

The programmable aperture can be implemented in several ways. In this subsection we

describe three prototypes we have built in chronological order. The prototypes are all

installed into a Nikon D70 DSLR camera to capture the data used in experiments. We

use a Nikkor 50mm f/1.4D lens module. For simplicity, we dismount the lens module

from the camera and insert the programmable aperture in between them. Hence the

distance between the lens and the sensor is lengthened and the focus range is shortened

as compared to the original camera. However, as we shall see later, this problem can be

easily solved because the second and third devices can be made small enough to place

into the normal camera.

The first prototype is called rotary panel, as shown in Figure 3.6. It is made of a

circular transparent plastic plane of the radius 139mm. The designed multiplexing pat-

terns are manually pasted on the panel. There are 16 multiplexing patterns can be placed

on a single rotary panel. All the pieces are aligned using the positioning mechanisms,

which can translate and rotate independently. This prototype works fine but has some
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Figure 3.5: Performance improvement by multiplexing (2/2).

(Top) Light field image captured without multiplexing. (Bottom) The corresponding

demultiplexed light field image. The angular resolution is 5 by 5 and the total exposure

time is 500ms for both cases.
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Nikon D70

Nikkor 50mm 

f/1.4D

Rotary panel

Positioning 

mechanisms

(a)

(b)

Figure 3.6: The first prototype: rotary panel.

(a) The photo of the prototype in action. (b) The schematic diagrams of the rotary panel.



67

3 cm

Figure 3.7: The second prototype: pattern scroll.

drawbacks. First, the rotary panel is huge and cannot be inserted into the camera body.

Second, the registration of the multiplexing patterns on the circular moving object is

difficult. As result, this prototype works at best a proof of concept.

The second prototype is called pattern scroll, which is an opaqued slit of paper. The

paper we choose was originally used for film protection and thus has a extremely low

transmittance. The aperture patterns are manually cut and scrolled across the optical

path. The scroll is long enough to include tens of multiplexing patterns or traditional

aperture shapes. This quick and dirty method is simple and performs well. Because the

transition between multiplex patterns can be very fast, it can easily capture high quality

multiplexed data. The cost for the paper is less than 3 US dollars3.

There are few minor issues of the pattern scroll. First, the block cell (wvk = 0)

cannot stay on the pattern scroll if it loses support. We solve this problem by leaving

a gap between each cell. Second, in operation, there could be some drifting errors in

the position of the patterns. In our hand-made device, the errors are less than 0.5mm

and do not seriously affect the acquisition. In rare cases, these errors cause a narrow,

halo-like effect around the strong edges in the demultiplexed images. However, those

3Actually the 3 dollar is for the film (Ilford FP4 plus 125) because we cannot buy the paper alone
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Figure 3.8: The third prototype: liquid crystal array.

effects can be easily identified and removed. Also we believe the drifting error would

not be a problem to the industrial manufacturers.

The third prototype, as shown in Figure 3.8, is made up of a liquid crystal array

(LCA) controlled by a Holtek HT49R30A-1 micro control circuit that support C lan-

guage. The LCA is customized by a local company and has two different resolutions:

5×5 and 7×7. The LCA is much easier to program and mount than the previous two

prototypes, and the multiplexing pattern is not limited to be binary. The price for each

piece of the LCA is 0.7 US dollars, and the control circuits cost roughly 3.5 US dollars.

However, the light rays can leak from the liquid crystal cells that cannot be com-

pletely turned off (i.e., T (v) is always non-zero) and from the gaps (used for routing) in

between the cells. In our experiments we compensate the leakage by capturing an extra

image with all liquid crystal cell turned off and subtracting it from all other images. One

can also put this image into the demultiplexing process and the linear system (Equation

3.5) becomes over-determined. However, this method costs more computation and we

did not observe any noticeable quality improvement from it.

We use the Nikon Capture software to control the camera. All the images are saved
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Device Aperture 
size #shot Single exposure 

duration 
SNR of the  

light field samples 
SNR of the  

refocused image 

Angular ×
spatial 

resolution 

Conventional camera 
with small aperture A 1 T 

ܲ
ඥߪ଴ଶ ൅ ௖ଶߪ

 − 1 ൈ  ଶܯ

Conventional camera 
with large aperture ௔ܰ

ଶ1 ܣ T ௔ܰ
ଶܲ

ඥ ௔ܰ
ଶߪ଴ଶ ൅ ௖ଶߪ

 − 1 ൈ  ଶܯ

Plenoptic camera ௔ܰ
ଶ1 ܣ T ௔ܰ

ଶܲ
ඥ ௔ܰ

ଶߪ଴ଶ ൅ ௖ଶߪ
 ௔ܰ

ଷܲ
ඥ ௔ܰ

ଶߪ଴ଶ ൅ ௖ଶߪ
 ௔ܰ

ଶ ൈ ሺܯଶ
௔ܰ
ଶ⁄ ሻ 

Plenoptic camera 
with ௔ܰ

ଶܯଶ
 sensors ௔ܰ

ଶ1 ܣ T 
ܲ

ඥߪ଴ଶ ൅ ௖ଶߪ
 ௔ܰܲ

ඥߪ଴ଶ ൅ ௖ଶߪ
 ௔ܰ

ଶ ൈ  ଶܯ

Programmable aperture 
camera A ௔ܰ

ଶ ܶ ௔ܰ
ଶ⁄  

ேೌషమ௉

ටఙబమ ேೌమ⁄ ାఙ೎మ
 (S1) ௔ܰ

ିଵܲ
ඥߪ଴ଶ ௔ܰ

ଶ⁄ ൅ ௖ଶߪ
 ௔ܰ

ଶ ൈ  ଶܯ

PAC with multiplexing ≈ ௔ܰ
ଶ2/ܣ ௔ܰ

ଶ ܶ ௔ܰ
ଶ⁄  ൎ ௔ܰ ଵܵ 2⁄  ൎ ௔ܰ

ଶ
ଵܵ 2⁄  ௔ܰ

ଶ ൈ  ଶܯ

 

 

 

Table 3.1: Performance comparison between the conventional camera, the plenoptic

camera, and the programmable aperture camera.

in linear raw format4. The original image pipeline in the Nikon D70 contains several

non-linear operations, such as de-noising and tone mapping, which may corrupt the

linearity of the signal and make it difficult to evaluate the performance of our post-

processing algorithms. Therefore, we only perform per-channel linear scaling for white

balance and simple demosaicing. These two steps can be done either before or after

demultiplexing.

3.2.4 Performance Comparison

An important question is, despite the visual plausibility, how to quantitatively compare

our programmable with other light field cameras, and even with the traditional camera?

Unfortunately, we have no access to other light field cameras and the results reported in

previous literatures were all based on different criterions.

Here we make a theoretical analysis based on the noise model we just described (Eq.

3.7). Instead of comparing with all existing light field cameras that follow the same

4The Nikon raw format is not fully public. Here we use dcraw to convert it to the raw binary data

format.
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principle, we argue that because no light rays is blocked or attenuated in the plenoptic

camera [48], [27], it should be superior to other mask-based light field cameras [46],

[47], [21]. Therefore, we focus on the comparison between the programmable aperture,

the plenoptic camera, and the traditional camera in the follow analysis.

Without loss of generality, we assume the default number of sensors in these de-

vices is M2, and the angular resolution for capturing a single database is N2
a . The total

exposure duration for capturing a single dataset is fixed. Therefore, each exposure time

in our device is 1/N2
a of the total exposure.

We measure the signal-to-noise ratio (SNR) of these devices and list the results in

Table 3.1. The image captured by a conventional camera with a large aperture has

the best quality, but it has a very shallow depth of field and thus requires precise focus

setting. A light field image is equivalent to the image captured by a conventional camera

with a small aperture and thus its quality is worse than the formal case. An interesting

thing is that although light rays emitted from an in-focus scene point are recorded by

N2
a light field samplers, when the digital refocusing is performed, these N2

a are averaged

and the noises are suppressed. Therefore the SNR of the refocused image is increased

by a factor of Na and becomes competitive to the regular images.

The plenoptic camera is slightly better than the programmable aperture camera at

the same angular and spatial resolution. Nevertheless, in that case it requires N2
a M2

sensors. To capture a light field of the same resolution as the programmable aperture

camera, the plenoptic camera would require an array of nearly 100M sensors, which

would be difficult and expensive, if not impossible, to make.

3.2.5 Discussion

The proposed light field acquisition scheme does not require a high resolution sensor.

Therefore, it can be implemented on web cameras, cell-phone cameras, surveillance

cameras, etc. The image captured by previous light field cameras must be decoded

before visualization. In contrast, the image captured by our device can be directly

displayed. Even when the multiplexing is applied, the in-focus region remains sharp, as

shown in Figure 3.4 (c).
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Figure 3.9: Reducing the aperture size without affecting the angular resolution and the

multiplexing.

Another advantage of the programmable aperture is that the sampling grid and the

pre-filtering kernel are decoupled. Therefore, the aperture size (w in Equation 3.1) can

be chosen regardless of the sampling rate, as shown in Figure 3.9. In contrast, in pre-

vious light field cameras these two parameters are entangled. This unique flexibility of

the proposed device is useful in many cases. For example, when the scene is suitable

for depth estimation (layered or near-Lambertian), one can choose a smaller aperture

size to maximize the sharpness and preserve the details in the captured light field (min-

imizing the filtering effect). The aliasing can be later removed by depth-aware view

interpolation, as we describe in Section 4.1. Also, the sampling lattice on the lens plane

is no longer to rectangular and can even be adjusted dynamically. One can also follow

the analysis in Section 2.5.3 to specify the camera parameters for efficient sampling.

3.2.6 Related Work

There are a few concurrent works that use the ideas similar to the programmable aper-

ture for other applications. In [70] Mohan et al. showed that by using the programmable

aperture to capture a low angular-resolution light field, the spatial resolution of the in-

focused regions can be increased. However, this application is somewhat limited since

it only works at the in-focused regions. Also in that work, the programmable aperture

is implemented by manually changing the mask at the aperture plane.

Dou and Favaro combined the defocus cue and disparity cue between the light field

images captured by the programmable aperture to estimate the scene geometry and the

clean image in [71]. However, the accuracy improvement due to the defocus cue is un-

clear. Also, they did not implement a real programmable aperture but only used a tradi-
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tional aperture to perform the experiment. The data required for these two applications

can be easily obtained by our device and hopefully the invention of the programmable

aperture can inspire more novel applications in the future.

Hasinoff and Kutulakos used the multiple-exposure technique to capture several

different focused images with the maximal aperture setting [72]. These images are

then combined into a high quality all-in-focused image. However, the quality of the

combination relies on the performance of the depth-from-defocus algorithm. Because

this method also segments the exposure time budget, the image quality is actually worse

that that of the image refocused from the light field. Nagahara et al. move the camera

along the optical path during the exposure and thus make the blur kernel depth-invariant

[73]. The quality of the all-in-focused image depends on the deblur algorithm, and all

depth information are lost. This method can also be optically achieved by the wavefront

coding technique [74].

3.2.7 Limitation and Future Direction

The proposed device has great performance and flexibility, but it requires the scene and

the camera to be static because the data are captured sequentially. However, as we

mentioned above, the sharpness of the in-focus regions are unaffected by multiplexing.

Hence our system can capture a moving in-focus object amid static out-of-focus objects

and then recover the light field and scene geometry of the static object as described in

Section 3.4.

On the other hand, other devices capture the light field in one exposure at the ex-

pense of spatial resolution. However, it should be pointed out that the proposed method

is complementary to the existing ones. We can place a cosine mask or a microlens ar-

ray near the image plane to capture a coarse angular resolution light field and use the

programmable aperture to provide the fine angular resolution needed.

Multiplexing a light field is equivalent to transforming the light field to another

representation by basis projection. While our goal is to obtain a reconstruction with

minimal error from a fixed number of projected images (Mv(u) in Equation 3.3), an

interesting direction of future research is to reduce the number of images required for
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Figure 3.10: The effect of the photometric distortion.

The images are two of the nine light field images of a static scene. The insets show the

corresponding aperture shape in exposure.

reconstruction. The compressive sensing theory states that if a signal of dimension n

has a sparse representation, we can use fewer than n projected measurements to recover

the full signal [34]. We have followed this line and performed some small scale exper-

iments, but the results were not satisfactory. We believe it is because that although the

light field might be sparse when the angular and spatial dimensions are jointly consid-

ered [75], the programmable can only perform the random projection over the angu-

lar dimensions. To perform the full 4-dimensional projection, we may place multiple

programmable apertures at different positions in the optical path. The design may be

similar to the volumetric light attenuator in [55].

3.3 Photometric Calibration

The light fields captured by either our programmable aperture or other light field cam-

eras have a noticeable photometric distortion. The light field images corresponding to

the boundary of the aperture would appear very different to that corresponding to the

center of the aperture, as shown in Figure 3.10.

While being termed as vignetting collectively, this photometric distortion is at-

tributed to several sources: the cosine fall-off [5], the blocking of the lens diaphragm

[7], pupil aberrations [76], etc. Because this distortion breaks the common photometric

consistency assumption, it must be removed or it can obstruct view interpolation, depth
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estimation, and many other applications.

The exact physical model of the vignetting effect is difficult to construct. In general,

a simplified model that describes the ratio between the distorted light field image Id
v (u)

and the clean image Iv(u) by a 2(D−1)-degree polynomial function fv(u) is adopted:

Id
v (u) = fv(u)Iv(u) =

(D−1

∑
i=0

avi‖u− cv‖2i
2

)
Iv(u), (3.10)

where {aui} are the polynomial coefficients, cv is the vignetting center, and ‖.‖2 is the

Euclidean distance5. The function fv, called vignetting field, is a smooth field across the

image. It is large when the distance between u and cv is small and gradually decreases as

the distance increases. Our goal is to estimate the parameters of the function, including

{avi} and cv, and then to recover the distortion-free image Iv(u).

3.3.1 Previous Methods

Because the number of unknown variables in Eq. 3.10 is larger than the number of

observations, the estimation problem is inherently ill-posed. A straightforward method

is to capture a uniformly lit object so the distortion-free image Iv(u) becomes a priori.

However, the vignetting field changes when the camera parameters, including the focus,

aperture size, and lens module, are adjusted. It is impractical to perform the calibration

whenever a single parameter is changed.

Existing photometric calibration methods that require no specific reference object

generally make two assumptions to make the problem tractable [7], [77]. First, the

scene points have multiple registered observations with different levels of distortions.

Second, the vignetting center cv. The first assumption is usually valid in panoramic

imaging where the panorama is stitched from many images of the same view point.

The second assumption is valid in most traditional camera, where the optics and the

sensors are symmetric along the optical path. Some recent methods remove the first

assumption be exploiting the edge and gradient priors in natural images [78], but the

second assumption is still needed.

5The coordinates are normalized to (0,1).
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However, both assumptions are inappropriate for the light field images for two rea-

sons. First, the registration of the light field images taken from different view points

requires an accurate per-pixel disparity map that is difficult to obtain from the distorted

inputs. Second, in each light field image, the parameters, {avi} and cv, of the vignetting

function, are image-dependent and coupled. Therefore, simultaneously estimating the

parameters and the clean image is an under-determined nonlinear problem.

3.3.2 Proposed Algorithm

Here we propose the first algorithm to automatically calibrate the photometric distortion

of the light field images. The key idea is that the light field image closer to the center

of the optical path (i.e., v = 0) has less distortion. Therefore, we can assume Id
0 ≈ I0, 6

and then approximate other Iv’s by properly transforming I0 to estimate other vignetting

fields. As we mentioned, while the perfect registration is impossible, a proper outlier-

rejection method must be applied.

The flowchart of the proposed algorithm is shown in Figure 3.11(a) along with an

example. For an input Id
v , we first use the SIFT method, which is well immune to local

photometric distortions [79], to detect the feature points and find their valid matches in

I0 (Figures 3.11 (b) and (c)). Next, we apply the Delaunay triangulation to the matched

points in Id
v to construct a mesh (Figure 3.11 (d)). For each triangle A of the mesh, we

use the displacement vectors of its three vertices to determine an affine transform. By

affinely warping all triangles, we obtain an image Iw
v from I0 (Figure 3.11 (e)).

The warped image Iw
v is close enough to the clean image Iv unless there are triangles

including objects of different depths or incorrect feature matchings. Such erroneous

cases can be effectively detected and removed by measuring the variance of the associ-

ated displacement vectors. By dividing the distorted image Id
v with the warped image

Iw
v and excluding the outliers, we have an estimated vignetting field, as shown in Figure

3.11 (f). We also show the vignetting field estimated from the image without warping in

Figure 3.11 (g). Compare those two images we can find that the warping can effectively

find a rough approximation of the smooth vignetting field, and the outliers around the

6One can also use other single-image vignetting algorithms to calibrate it.
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Feature 

detection and 

matching
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triangulation
Deformation

Estimate {avi} Update cv

Distortion
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Figure 3.11: The flow and results of the photometric calibration.

(b) The image to be correct Id
u . Not the left side is darker. (c)The reference image

I0. Matched points in (b) and (c) are marked as green points. (d) Triangulation of the

matched features in (b). (e) The image Iw
v warped from (c) based on the triangular mesh.

(f) The approximated vignetting field with suspicious areas (black) removed. (g) The

vignetting field approximated without warping. (h) The estimated parametric vignetting

field. (i) The calibrated image Iv. (j) The intensity profile of the 420th scanline before

and after the calibration.
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depth discontinuities are successfully excluded.

After we have the approximation of the vignetting field, we estimate the parametric

vignetting function (Equation 3.10) by minimizing an objective function E({avi},cv):

E({avi},cv) = ∑
u

( Id
v (u)

Iw
v (u)

− fv(u)
)2

. (3.11)

This objective function is non-linear because {avi} and cv are coupled. Therefore, we

minimize this function iteratively. Given an initial estimate, we first fix the vignetting

center cv. This makes the Equation 3.11 linear in {avi}, which can be easily solved

by a least square estimation. Then, we fix {avi} and update cv. This is done by a

gradient descent method. We want to find a displacement dv such that E({avi},cv +dv)

is minimized.

Specifically, let ri denote the distance between ui = (xi,yi) and cv = (cv,x,cv,y), the

N-D vector r = [r1,r1, ...,rN ]T denote the distances between all points {ui|i = 1, ...,N}

and cv. We also denote Iv as the vector of estimated vignetting field, that is, the ratio

Id
v /Iw

v . Because cv is the only variable, we can re-define the vignetting function fv(u) as

a vector function f(cv) = [ fv(u1), fv(u2), ..., fv(uN)]T . Then Equation 3.11 is equivalent

to the L2 norm of the error vector ε: ‖ε‖= ‖Iv− f(cv)‖. Then the optimal displacement

dv at iteration t can be obtained by solving the normal equation:

JT Jdv =−JT
εt−1, (3.12)

where J is the Jacobian matrix (J = df
dcv

) and εt−1 is the error vector of the previous

iteration. We here set D = 4 and thus the Jacobian is:

df
dcu

=



−(x0− cv,x)[2a1 +4a2r2
0 +6a3r4

0] −(y0− cv,y)[2a1 +4a2r2
0 +6a3r4

0]

−(x1− cv,x)[2a1 +4a2r2
1 +6a3r4

1] −(y1− cv,y)[2a1 +4a2r2
1 +6a3r4

1]
...

...

−(xN− cv,x)[2a1 +4a2r2
N +6a3r4

N ] −(yN− cv,y)[2aN +4a2r2
N +6a3r4

N ]


.

(3.13)

Note that this Jacobian is evaluated using the vignetting center obtained in the previous

iteration and the coefficients estimated in this iteration. In this way the convergence
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Figure 3.12: Application of the proposed algorithm to the dataset of other light field

cameras.

The light field is captured using the heterodyned light field camera in [21] (Left) The

original light field image. (Right) The calibrated and re-synthesized light field image.

speed is increased. We also find that because the number of parameter is small, we can

sub-sample the image to reduce the computation. Usually 1000 to 2000 inlier samples

are sufficient. For each image, we perform 50 iterations and choose the parameters with

minimal objective value as the result. One obtained vignetting field is shown in Figure

3.11 (h).

Finally, we divide Id
v by fv to recover the clean image Iv, as shown in Figure 3.11

(i). One scanline profile is also shown in Figure 3.11 (j) for comparison. We can see

that the recovered image has much less distortions.

It should be emphasized that the light field data captured by all light field cam-

eras have photometric distortion to some degrees. Our photometric calibration can be

applied to those data as well, as one example shown in Figure 3.12. The data in the

example is captured using the heterodyned light field camera [21]. It is very noisy and

has serious distortion. We apply our algorithm to estimate the vignetting field and then

estimate the scene geometry using the method described in the next section, and finally

perform the view-interpolation to re-synthesize the image at the same view point. We

can see that the re-synthesized image is much cleaner than the original one.



79

3.4 Multi-View Depth Estimation

Images corresponding to new viewpoints or focus settings can be rendered from the

captured light field by re-sampling. However, the quality of the rendered image is dic-

tated by the bandwidth of the light field, which strongly depends on the scene geometry

[11], [12]. As we have analyzed in Chapter 2, a scene with higher depth range requires

a higher angular resolution for aliasing-free rendering. Although one can adjust the

angular resolution of the programmable aperture camera, a high angular sampling rate

requires a long capture duration and a large storage, which may not be always afford-

able.

Here we propose a multi-view depth estimation algorithm to generate view-dependent

depth maps for view interpolation. By depth-dependent view interpolation, we can

greatly reduce the angular sampling rate for the near-Lambertian scene. The estimated

depth maps can also benefit other applications, such as z-keying, matting [57], robot

vision, and so on.

3.4.1 Previous Methods

Previously the aliasing is removed by pre-filtering [3] or post-filtering [80]. In this

way the out-of-focus object are blurred. However, while the visual quality is improved,

these methods implicitly require the depth range of the scene but did not fully utilize

this information. In [11] the image is segmented into many blocks and each block is

assigned an optimal depth value. If the user wants the best visual quality, this method

would require the per-pixel depth value, which is exactly what we want to estimate.

The multi-view depth estimation problem is similar to the traditional stereo cor-

respondence problem [81]. However, the visibility reasoning is extremely important

for multi-view depth estimation since the occluded views should be excluded from the

depth estimation. Previous methods that determine the visibility by hard constraint [82]

or greedy progressive masking [83] can easily be trapped in local minima because they

cannot recover from incorrect occlusion guess.
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3.4.2 Main Concept

Inspired by the symmetric stereo matching algorithm [84], we alleviate this problem

by iteratively optimizing 1) a view-dependent depth map Dv for each image Iv and 2)

an occlusion map Ovw for each pair of neighboring images Iv and Iw. If a scene point

projected onto a point u in Iv is occluded in Iw, it does not have a valid correspondence.

When this happens, we can set Ovw(u) = 1 to exclude it from the matching process. On

the other hand, if the estimated correspondence u′ of uw in Iw is marked as invisible,

that is, Owv(u′) = 1, the estimate is unreliable.

Depth and occlusion estimation is formulated as a discrete labeling problem [85].

For each pixel uv, we need to determine a discrete depth value Dv(u) ∈ {0,1, ...,dmax}

and a binary occlusion value Ovw(u)∈{0,1}. More specifically, given a set of light field

images I = {Iv}, we want to find a set of depth maps D = {Dv} and a set of occlusion

maps O = {Ovw} to minimize the energy functional defined by

E(D,O|I) = ∑
v

{
Edd(Dv|O,I)+Eds(Dv|O,I)

}
+∑

v
∑

w∈N(v)

{
Eod(Ovw|Dv,I)+Eos(Ovw)

}
, (3.14)

where Edd and Eds are the data term and the smoothness (or regularization) term, re-

spectively, of the depth map, and Eod and Eos are the data term and the smoothness

term, respectively, of the occlusion map. N(v) is the set of the viewpoints which are

close to v7.

The intuition of our formulation is as follows. The optimal depth maps and occlu-

sion maps should be compatible to each other. Given a perfect depth map, it is easy to

know if a specific point will be occluded when the viewpoint is changed, and the answer

should be the same as that from the perfect occlusion map. Therefore, the energy of the

depth maps should depend on not only the input images, but also the occlusion maps,

and vice verse.

However, this dependency makes the optimization intractable. The occlusion map

cannot be easily estimated from the observation alone, and the depth maps can not be

precisely estimated when the occlusion reasonable is absent. Therefore, we minimize

7In our case, this is equivalent to the light field images captured with closer aperture centers
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Figure 3.13: Overview of the proposed multi-view depth estimation algorithm.

the energy iteratively. In each iteration, we first fix the occlusion maps and minimize

Edd +Eds by updating the depth maps and then fix the depth maps and minimize Eod +

Eos by updating the occlusion maps.

The overview of the proposed algorithm to minimize Equation 3.14 is shown in

Figure 3.13. In the following subsections, we describe the definitions of energy terms,

and then the method we use to minimize them in details.

3.4.3 Definitions of Energy Terms

The energy terms should be defined in the way such that it obeys the fundamental rules

in vision (e.g., the color and intensity consistency), and also follows the prior knowledge

(e.g., the depth variation of the object should be smooth). Inevitably, some hand-tuned
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parameters, such as weighting coefficients and the thresholds, would present in the

function, but this would not be a problem in practical as long as the optimal parameters

do not vary significantly from one dataset to another.

Before proceeding, let α, β, γ, ζ, η, ρ, γc and γs denote the coefficients; K and T

denote the thresholds. These parameters are empirically determined and fixed in the

experiments. The data term Edd is a unary function8,

Edd(Dv|O,I) =

∑
u

{
∑

w∈N(v)

(
Ōvw(u)C

(
Iv(u), Iw(x+Dvw(x))

)
+αOwv(x+Dvw(u))

)}
, (3.15)

where Ōvw(u) = 1−Ovw(u), which can be considered as a non-occlusion map. Dvw is

the disparity vector on the image plane corresponding to the depth value Dv.

C(Ia, Ib) is the dissimilarity measurement between the color or brightness of two

pixels a and b. Here we use two different measurements. In the early iterations, because

the occlusion maps are either absent or inaccurate, we use a window-based rank and

census transform [86]. For each pixel, we pack all neighboring pixels into a vector

and replace the intensity values with their ranks in the vector. A simple example is as

follows:

[120,128,178,160,175,182,140,20,25]→ [2,3,7,5,6,8,4,0,1]. (3.16)

This operation is also called a rank filter. It has been shown in [87] that the rank filter

is the most robust filter against noise, vignetting, and other distortions. Without the

knowledge of the occlusion or object segmentation, it gives the best initial guess.

When the occlusion maps are at hand in the later iterations, we replace the rank

filter with the Birchfield-Tomasi per-pixel measurement [88] that is wildly used in

most stereo estimation algorithms. For both measurement functions, they are clamped

by a threshold K. In this way, the outliers, such as specularity, which cannot be matched

would not cause a large penalty in the energy function.

The intuition of the Edd is as follows. When the corresponding pixel of u in Iw

is non-occluded (Ōvw(u) = 1), Iv(u) should look similar to the corresponding pixel

8Each entity in the summation depends on a single node (pixel) in the graph (image).
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Iw(x + Dvw(x)), so the value of the dissimilarity measurement should be small. On

the other hand, if the estimated corresponding pixel is impossible to be observed in Iv,

this estimation should be penalized.

The definition of the pairwise smoothness term Eds is based on a generalized Potts

model:

Eds(Du|O,I) = ∑
(u,s)∈P,

Ov(u)=Ov(s)

βmin(|Dv(u)−Dv(s)|,T ), (3.17)

where P is the set of all pairs of neighboring pixels and Ov =
⋂

Ovw, which is true only

when uv is occluded in all other images. This energy function encourages the depth

to be piecewise smooth. But when the depth difference is larger than a threshold, the

penalty should be uniform. It is because when this happens, these two pixels should

belong to tow different object, and there should be no correlation between the depth

values of two independent objects.

In some stereo estimation algorithm, the smoothness term is modulated with the

color difference of two pixels. However, we find that when the occlusion reasoning is

accurate, the modulation does not give any noticeable performance gain.

Next, we describe the energy terms involved in the second step in one iteration.

Because the depth maps D are fixed in this step, the prior of an occlusion map can be

obtained by warping the depth map. Specifically, let Wvw denote a binary map. The

value of Wvw(u) is 1 when the depth map Dw warped to the viewpoint v is null at uv and

0 otherwise. If Wvw(u) = 1, uv might be occluded in Iw. With this prior, the data term

Eod is formulated as:

Eod(Ouv|Du,I) = ∑
u

(
Ōvw(u)C

(
Iv(u)− Iw(u+Dvw(u))

)
+ γOvw(u)

+ ζ|Ovw(u)−Wvw(u)|
)
, (3.18)

where the first term biases a pixel to be non-occluded if it is similar to its correspon-

dence, the second term penalizes the occlusion (O = 1) to prevent the whole image from

being marked as occluded, and the third term favors the occlusion when the prior Wvw

is true.



84

Figure 3.14: The effect of the cross bilateral filtering.

(Left) The estimated map at the first iteration where the occlusion map is absent. (Right)

The cross bilateral filtered depth map. The inset shows the light field image used in the

filtering.

Finally, the definition of the smoothness term Eos is based on the Potts model:

Eos(Ovw) = ∑
(u,s)∈P

η|Ovw(u)−Ovw(s)|. (3.19)

This function suggests that the occlusion map should be piecewise smooth.

3.4.4 Optimization

The solution of the energy minimization is a maximum a posteriori (MAP) estimate

of a Markov random field (MRF), for which high-performance algorithms have been

recently developed.

We use the MRF optimization library from Middlebury [89]. Among all algorithms

provided in the library, both the alpha-expansion graph cut [85], loopy belief propaga-

tion [90], and the tree-reweighted message passing [91] perform well, but the last one

gives slightly better results at the cost of execution time.

Specifically, the tree-reweighted message passing (TRW-S) first partition the MRF

into several spanning trees which fully cover all nodes in the MRF. A reweighted max-

product belief propagation is performed for each tree and finally the beliefs from all

trees are then combined into the final belief.

The proposed algorithm would require many iterations because in the beginning the

occlusion map is far from perfect. To speedup the convergence, we make an assumption
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that a depth map should be smooth if the associated image is smooth. Therefore, we

can apply a modified cross bilateral filtering [92] to the depth maps at the end of each

iteration to improve their quality.

Specifically, given the depth map Dv and the image Iv, we first build a data cost

volume C(u,d) based on the depth value Dv(u):

C(u,d) = min((d−Dv(u))2,ρDmax). (3.20)

Then, a L1-norm bilateral filter is applied to each slice of the cost value. The filtered

cost volume C′(u,d) is

C′(u,d) =
∑s∈N(u) fc(u,s) fs(u,s)C(s,d)

∑s∈N(u) fc(u,s) fs(u,s)
, (3.21)

where

fc(u,s) = exp
(
− | I(u)− I(s) |

γc

)
, (3.22)

and

fs(u,s) = exp
(
− | u− s |

γs

)
. (3.23)

In other words, we use the color difference as well as the spatial distance to weight

the contribution of the neighboring pixels. Then, the minimal value in the filtered cost

volume is the new depth value. We find that this refined depth map can address many

errors at the depth discontinuities in the early iterations, as shown in Figure 3.14. When

the occlusion maps become accurate in the later iterations, the cross bilateral filter can

be removed. Using the cross-bilateral filtering, we usually only require 3 iterations to

obtain the a reasonable result.

3.4.5 Performance Analysis

The recovered depth maps of the light field we captured in shown in Figure 3.15 and

3.16. We can see that our algorithm works well for layered scenes, slanted planes,

textless objects, and even furry objects.

Because our algorithm is designed for the problem of dense multi-view depth esti-

mation, for which a public benchmark is not available, we apply our algorithm to public
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Figure 3.15: Depth maps of the captured light field dataset (1/2).
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Figure 3.16: Depth maps of the captured light field dataset (2/2).
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stereo benchmark on the Middlebury website9. Our algorithm achieves an average rank

of 8.2 when only two images are used in the optimization and 7.0 when all images are

used. The results are shown in Figure 3.17, 3.18, 3.19, and 3.20. This score is the fifth

best one in a pool of 41 algorithms at the time of updating. Our algorithm is the best

one among all algorithms that do not utilize image over-segmentation and plane fitting.

However, most of those algorithms cannot be trivially applied to the multi-view dataset.

We find that in the top algorithms including ours, the errors are usually due to the

aliasing around the object boundaries. Assign a single depth to those pixels that may be

covered by more than one object is not reasonable so the score is somewhat biased.

Finally, we compare our algorithm with other multi-view depth estimation algo-

rithms [83], [82]. The results of [83] and [82] are shown in Figure 3.21. We can see

that our algorithm is much better than them. It is interesting that our basic formulation

is very similar to that in [83], but they use a greedily occlusion reasoning without it-

eration because they think it may not converge. Here we show that the convergence is

always possible, at least in all of our experiments.

3.4.6 Discussion

The light field images captured by our programmable aperture camera have several

advantages for depth estimation. First, the viewpoints of the light field images are

well aligned with the 2D grid on the aperture, and thus the depth estimation can be

performed without camera calibration. Indeed, all the results present here are obtained

without applying any geometric calibration. Second, the disparity corresponding to a

depth value can be adjusted by changing the camera parameters without any additional

rectification as required in camera array systems. Finally, unlike depth-from-defocus

methods [93], [33], there is no ambiguity in the scene points behind and in front of the

in-focus object.

It should be emphasized that both the light field data and the post-processing al-

gorithms are indispensable for generating plausible photographic effects. To illustrate

this, we apply a single light field image and its associated depth map to the Photoshop

9http://vision.middlebury.edu/stereo/
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: The results of the test dataset Tsukuba.

(a) The groundtruth disparity map, (b) the estimated disparity map, (c) the bad pixels

(absolute disparity error > 1.0), (d) the signed disparity error map, (e) the left input

image, and (f) the right input image.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: The results of the test dataset Veuns.

(a) The groundtruth disparity map, (b) the estimated disparity map, (c) the bad pixels

(absolute disparity error > 1.0), (d) the signed disparity error map, (e) the left input

image, and (f) the right input image.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.19: The results of the test dataset Teddy.

(a) The groundtruth disparity map, (b) the estimated disparity map, (c) the bad pixels

(absolute disparity error > 1.0), (d) the signed disparity error map, (e) the left input

image, and (f) the right input image.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.20: The results of the test dataset Cones.

(a) The groundtruth disparity map, (b) the estimated disparity map, (c) the bad pixels

(absolute disparity error > 1.0), (d) the signed disparity error map, (e) the left input

image, and (f) the right input image.
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(a)

(b)

Figure 3.21: The results of other multi-view depth estimation algorithms.

(a) The result of [83]. (b) The result of [82].
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(a) (b)

(c)

(e) (f)

(d)

Figure 3.22: Effects of the post-processing algorithms.

(a) Depth map estimated without photometric calibration and occlusion reasoning. (b)

Depth map estimated without occlusion reasoning. (c) Defocusing by the Photoshop

Lens Blur tool. (d) Defocusing using the light field and depth maps. (e) Close-up of (b)

and (c). (f) Corresponding close-up of (d) and Figure 3.15.
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Lens Blur tool to generate a defocused image. The result shown in Figure 3.22 (c) con-

tains many errors, particularly at the depth discontinuities, Figure 3.22 (e). In contrast,

our results, Figure 3.22 (d) and (f), are more natural. The boundaries of the defocused

objects are semi-transparent and thus the objects behind can be partially seen. Also we

can see that without photometric calibration, the result of the depth estimation would

be very bad.

3.5 Summary

In this chapter we have described a system for capturing light field using a programmable

aperture camera with an optimal multiplexing scheme. Along with the programmable

aperture, we have also developed two post-processing algorithms for photometric cali-

bration and multi-view depth estimation. To our best knowledge, this system is the first

single-camera system that generates light field at the same spatial resolution as that of

the sensor, with adjustable angular resolution, and free of photometric distortion. In

addition, the programmable aperture is fully backward compatible with conventional

apertures.

While we have focused on the light field acquisition in this work, the programmable

aperture camera can be further exploited for other applications. For example, it can be

used to realize a computational camera with a fixed mask.
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Chapter 4

Applications of the Light Field

Cameras

In this chapter, we describe the applications using the light field captured by the pro-

grammable aperture camera and the depth information estimated by the proposed multi-

view depth estimation algorithm. We first present a method to synthesize a high-quality

image of a novel viewpoint. Then, we present a method to synthesize high quality refo-

cused image. Finally, we present a new interface to adjust the focus settings in real-time

based on the feature matching. There are several other applications such as fusion of

all-focused images and depth-detection are presented in Chapter2. It is because they

can be easier explained in the proposed light transport framework.

4.1 View Interpolation

Given the light field L(u,v), we can easily generate a image of a new viewpoint by

properly sampling the light field. Because the captured light field samples are discrete,

we must apply a reconstruction filter to obtain the continuous signal. However, as

we have analyzed in Chapter 2, the optimal reconstruction filter depends on the scene

geometry. If the trivial bilinear filter is used, serious ghosting effect due to aliasing is

observed, as shown in Figure 4.1. In this case, the raw angular resolution is 3×3, which

is far below the Nyquist rate.

97
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Figure 4.1: Image interpolated without depth information.

Previously the aliasing was removed using filtering [3], [12], and the out-of-focus

objects become blurry in the resulting image. Here we strive to obtain an clean, all-

focused image. We use a modified projective texture mapping method [94]. The flow

of the proposed algorithm is shown in Figure 4.2. Given a viewpoint, four closest im-

ages are warped according to their associated depth maps obtained by the algorithm de-

scribed in 3.4. The warped images are then blended together. The weight of each image

is inversely proportional to the distance between its viewpoint and the given viewpoint.

Furthermore, although the photometric distortions in the light field are already removed

using the algorithm described in 3.3, the pixels which belong to the regions with seri-

ous distortions are much noisier than others. Therefore, we also weight each pixel by

its vignetting function. After all images are warped, we combine them together and

normalize all weights to obtain the final image.

One result is shown in Figure 4.3, which has the same viewpoint to the one in Fig-

ure 4.1. We can see that the ghosting effect is greatly suppressed without blurring. In

addition, although the specified viewpoint is very close to that of an existing light field

image, our distortion-aware weighting scheme can further remove the small photomet-
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Figure 4.2: The illustration of the proposed depth-assisted view interpolation.
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Figure 4.3: Image interpolated with depth information.

ric distortions in the light field images.

4.2 Digital Refocusing

Given the light field in the camera, we can easily generate the images of different focus

planes by transforming the light field before the integration [12], or by changing the

integration directions [24]. One example is shown in Figure 4.4. This scene contains a

transparent object in front of a nearly uniform background. The geometry of this scene

is difficult to estimate. However, since our acquisition method does not impose any

restriction on the scene, we can capture the light field with 4× 4 and generate faithful

refocused images.

However, as we described above, the captured light field is usually under-sampled

and thus has aliasing. In the refocused image, the aliasing results in high frequency

patterns in the defocused regions as shown in Figure 4.5. In the previous section we

have presented an algorithm to synthesize distortion-free images. Here we utilize it to

synthetically increase the angular resolution to reach the Nyquist rate. For example, the
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Figure 4.4: Digital refocusing of a transparent object.

Nyquist rate of the scene in Figure 4.5 can be calculated according to the analysis in

Chapter 2 and is roughly 20× 20. We increase the angular resolution to 25× 25 and

then perform digital refocusing, as shown in Figure 4.6. We can see that the out-of-

focus objects are blurry now while the in-focus objects remain sharp.

4.3 Feature-Based Refocusing

We have demonstrated that the high quality refocusing effects can be created from the

captured light field and estimated depth maps. However, specifying the correct focus

is a difficult and tedious job for ordinary users. They need to understand the scene

structure and perspective transformation. In most cases, the users have to fully sweep

all possible focus settings and pick the images with the right focus.

Here we propose a more intuitive interface for this task. First, let’s review the

refocusing Equation 2.48. When the distance between the lens and the image plane F
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Figure 4.5: Digital refocused image with the original angular resolution 4×4.

is replaced with bF , the refocused image IbF is defined by

IbF(u) =
∫

L(u/b+(1−1/b)v,v)dv. (4.1)

Because the distance between the lens and the image plane is changed, the magnification

factor of the image is changed as well. It is desirable to compensate this change by

magnifying the refocused image by a factor of b:

I′bF(u) = IbF(bu) =
∫

L(u+(b−1)v,v)dv = ∑ Iv(u+(b−1)v). (4.2)

We can see that given the refocus parameter b, the equation above is equivalent to first

translating the light field image Iv by (b−1)v and then accumulating all translated light

field images together.

Furthermore, we know that for I0, the translation vector is always 0. If we know that

for a point on the object, it coordinate in Iv and I0 are uv and u0, respectively. When we

want this object to be in-focus, uv must move to u0, and thus

uv +(b−1)v = u0,

b =
u0−uv + v

v
. (4.3)



103

Figure 4.6: Digital refocused image with the boosted angular resolution 25×25.

In other words, for each object to be refocused, if we can find a matched pair between

I0 and another one of other light field images, the refocus parameter can be obtained

using Equation 4.3.

The problem we need to solve now is to efficiently find the matched points on the

specified object. We first extract the SIFT features [79] in I0 and Iv. The features in each

image are stored in an independent k-d tree for efficient query. When the user move the

cursor on the image, we continuously gather all the feature points in I0 around the cur-

sor, and find their matched points in Iv. While the SIFT features are very robust, wrong

matchings may still occur and the features may not belong to the same object. There-

fore, we use RANSAC to find the optimal translational vector. Given the translational

vector, Equation 4.3 can be easily solved.

The snapshots of the program are shown in Figure 4.7 and Figure 4.8. To illustrate

the matching results we show the displacement vectors of the matched pairs in the im-

ages. The red vectors are the inliers in the RANSAC estimation and the green ones are

the outliers. We can see that all outliers are successfully removed and the refocus set-

ting is correct in all those results. Because we only perform feature matching between
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two images, the computational cost of the matching very small. For the light field of

angular resolution 5× 5 in Figure 4.8, the un-optimized program runs at 27fps on a

desktop with a Intel 2.4Ghz CPU and 2GB memory.

4.4 Summary

In this chapter we have shown many applications of the light field. Using the pro-

grammable aperture, we can capture the light field and then generate many post-exposure

effects, such as digital refocusing, which are impossible in the traditional photography.

We have shown that the depth information can successfully alleviate the ghosting effect

due to aliasing. The proper parameters for the anti-aliasing can be easily obtained using

the analysis in Chapter 2.

We have also provided users a new interface to perform refocusing, which is also

an application that did not exist in the past. By using feature matching, user can easily

specify the focus plane in a drag-and-click manner.

Besides the applications shown above, there are many trivial applications that we

do not present here, such as z-keying and natural image matting. We also believe that

the fruitful light field data and the accurate depth information can enable applications

that one can never imagine before.
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Figure 4.7: Feature refocusing (1/2).
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Figure 4.8: Feature refocusing (2/2).



Chapter 5

Efficient Processing

In this chapter, we will present two algorithms that are not only related to the light field

analysis and acquisition, but are very important to the fundamental problems in com-

puter vision and signal processing. We first present a new belief propagation method

called tile-based belief propagation that can perform energy minimization to gigapixel

images without sacrificing the performance and the convergence speed. The proposed

method can be easily mapped to parallel processors. The experimental results show that

the graphics processing unit (GPU) and VLSI implementations are 8 to 100 times faster

than the CPU implementation.

We then propose a new noise-aware demultiplexing algorithm. The demultiplexing

is formulated as a maximum a posteriori estimation. It can be casted into an L1 regu-

larized energy minimization problem. The experimental results show that the proposed

method is better than the traditional linear demultiplexing method.

5.1 Tile-Based Belief Propagation

Many problems in low-level visions can be formulated as a maximum a posteriori

(MAP) estimation on a Markov random field (MRF). For each pixel or patch, we esti-

mate an entity that best matches the observation (image) and the compatible to the prior

knowledge, such as surface smoothness. To name a few applications, the entities can be

the pixel values in a noise-suppressed image [90], the disparity vector of the disparity

107
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map [85], [82], the source image indices of the stitched image [89], etc.

The MRF can be represented by an undirected graph G = (V,E) consisting of a set

of n nodes (vertices) V = {v1,v2, ...,vn} and the edges E that connecting the neighbor-

ing nodes. Let N(p) = {q ∈ V | (p,q) ∈ E} denote the neighbor of p. Each node is

associated with a random variable Xp taking values xp in some sample space Xp. The

sample space is discrete in many applications. That is, Xp := {0,1, ...,Lp−1}.

If we consider the simple 4-connected or 8-connected neighboring system, the en-

ergy function1 of a set of random variables X = {xp | p ∈V} is

E(p) = ∑
p∈V

Ed(xp)+ ∑
(p,q)∈E

Es(xp,xq). (5.1)

where Ed is an unary data term and Es is a pairwise smoothness term.

As we have mentioned in Chapter 3, the performance of the application depends

on the definitions of the energy terms and the chosen optimization algorithms. Finding

the set of random variables that minimizes this energy function is generally an NP-hard

problem [85]. However, recently many algorithms have been proposed to efficiently

find the local minimal solution in polynomial time with guaranteed optimum property.

Those algorithms includes alpha-expansion graph cut [85], loopy belief propagation

[90], tree-reweighted message passing [91] and many other variants [95].

While the single-thread software implementation of these algorithms works effi-

ciently and effectively, the hardware implementation on VLSI or other parallel pro-

cessors is much less addressed in the past. Also those global optimization algorithms

usually require a great amount of memory and multi-pass data access, which are both

very expensive for memory- and bandwidth-limited embedded systems.

5.1.1 Belief Propagation: Preliminary

Belief propagation (BP) is one of the most successful MAP-MRF optimization algo-

rithms. Given a graph G which is defined above, each node passes the outgoing mes-

sages, which is updated according to the incoming messages and the energy functions,

to its neighbors. For example, in the min-sum/max-product BP, the message sent by p
1The negative log of the joint probability density function or the potential functions of cliques.
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Figure 5.1: The message and belief construction.

(a) An outgoing message is constructed using three incoming messages. (b) The belief

is constructed using all incoming messages.

to q at the t-th iteration is mt
(p,q), which is a L-D vector2. The message is computed as

(Figure 5.1(a)):

mt
(p,q)(xq) = min

xp∈X

(
Es(xp,xq)+Ed(xp)+ ∑

s∈N(p)\q
mt−1

(s,p)(xp)
)
, (5.2)

where N(p)\q denotes the neighbors of p other than q. After T iterations a belief vector

bp is computed as (Figure 5.1(b))

bp(xp) = Ed(xp)+ ∑
s∈N(p)

mT
s,p(xp). (5.3)

Finally, at each node a label x∗p = argminbp(xp) is chosen independently. The in-

tuition behind the belief propagation is as follows. The incoming messages to p give

the suggestions from other nodes about being assigned a label x, and the outgoing mes-

sages combine the opinion and the self-judgment into a new suggestion to other nodes.

Through iterations the nodes far away from each can more or less receive the sugges-

tions from each other. As a result, a global optimal decision can be obtained.

It has been shown that when the graph contains no loop, BP can find the global

optimal solution, and when the graph contains loops, BP can find a strong local optimal

2We assume that Lp = L for all p and all random variables use the same sample space.
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solution3. While graph cut can sometimes find a better solution, it requires the smooth-

ness to be submodular. On the contrary, BP has no such restriction. The theoretical

analysis of the BP can be found in [96], [97], [98].

5.1.2 Belief Propagation: Cost Analysis

It can be easily seen that BP has several advantages for hardware implementation. First,

it is highly parallel. Each node can load the messages from the previous iteration, op-

erate independently, and generate new messages. Second, it only use simple operations

such as additions and comparisons. Therefore the processing element (PE, or kernel in

GPU programming) can be made very small. Third, the memory access is regular. On

the contrary, while the graph cut can be parallelized by using the push-relabel algorithm

as shown in [99], each PE has many branches and thus is much more complex.

However, BP cannot be efficiently implemented in hardware due to the great amount

of memory, bandwidth, and computation. We now analyze these three issues in the

following.

Memory: Like all other global optimization algorithms, we need to store nL data

terms. The smoothness terms, which are usually globally uniform, can be analytically

defined or tabularized. Also, we need to store 4nL messages for the 4-connected MRF.

Therefore, to perform BP we need to store 5nL messages. For example, in stereo estima-

tion of a 720p image with 100 disparity values and assume each element takes one byte,

BP totally takes 460,800,000 bytes (439.45 MB), 500 times the image size. In [100]

the authors propose to compress the messages using various techniques. However, the

number of the messages is unaffected; the decompression requires extra computation

and latency. In [101] the image is segmented into many independent patches. The

memory can be greatly reduced but the global optimality is totally lost. The results of

the so-called block-based BP would be poor in many applications.

Bandwidth: The bandwidth of BP depends on the scheme of the message passing.

Using the most efficient BPM scheme in [102], each node loads three messages and the

data terms and saves one new message. In each iteration each node is processed 4 times,

3Remember that finding the global optimal solution is NP-hard.
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Figure 5.2: Belief propagation for a single tile.

so totally BP requires 4×n× (3+1+1)×L = 20nL data transferring in one iteration.

Using the 720p stereo problem as the example again and assume BP converges when

T = 50, for 25fps data, the bandwidth is 2,304,000,000,000 (2.0 tera) bytes per second.

Obviously this daunting bandwidth requirement is infeasible for the existing hardware,

as described in [103].

Computation: Although in constructing a new message (Equation 5.2) only ad-

ditions and comparisons are used, the number of operations is large. The arithmetic

complexity of the direct implementation is O(L2). For some analytic smoothness terms

such as linear and quadratic model, the message can be constructed in O(L) by using

the min-convolution operation [104]. However as we will see, this method is restricted

and introduces a large latency.

Our contribution is to make BP one step toward efficient hardware implementation

by developing a new message passing scheme and a new fast message construction

algorithm.

5.1.3 Proposed Algorithm

In this section we propose a new message passing scheme to remove the memory and

bandwidth bottleneck. Let’s review the construction of the message (Figure 5.1(a) and
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Equation 5.2), we find that an outgoing message is uniquely determined by the incoming

messages, the data terms, and the smoothness terms. If these entities are known, the

outgoing message is a redundant element that is only used to drive the propagation.

This property is also observed in [104]. In that work, the nodes are separated into

two non-connecting sets4 and in each iteration, only the messages toward one set is

calculated. Therefore the storage for the message can be halved. However, this scheme

cannot be applied to BPM.

We find that this property can be further exploited. Consider a tile consisting of

B×B nodes (B = 4 in Figure 5.2). We can see that, for this tile, the knowledge about

the outside world purely comes from the incoming messages (red arrows), no matter

how those messages are constructed and if they are correct. Using the incoming mes-

sages, the data terms of the nodes, and the smoothness terms, we can perform belief

propagation in this tile, and generate the belief and labels for the nodes in the tile with-

out accessing other data. In other words, when we focus on optimization of a small tile,

we can drop all data terms and messages of the outside but only those messages passing

to the tile.

If we want to perform belief propagation outside the tile, we need the knowledge

about the tile. However, the outgoing messages (blue arrows in Figure 5.2) are enough

to give this knowledge. We do not need to know the data terms in the tile, or even the

messages between the nodes in the tile (black arrows in Figure 5.2).

We can generalize this concept to the whole image. If we segment the image into

many non-overlapping tiles and perform the BP independently, the global optimal prop-

erty is lost. However, if we maintain the messages bridging the neighboring tiles, when

the belief propagation in the tile is still driven by the messages from other tiles. There-

fore the global optimality shall be preserved.

According to this idea, we propose a tile-based belief propagation. The pseudo code

of the algorithm is given in Table 5.1 and the flow is illustrated in Figure 5.3. We first

scan the image in a raster scan order. At each time a B×B tile is processed. We load

all messages, which we call boundary messages, sending to the tile, and the data terms

4That is, a node in one set does not connect to another node of the same set.
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function {𝑥𝐩
∗}TileBasedBP(Ed, Es, B, To, Ti)  

1 for to=1,…,To 

2     loop through all tiles in a raster scan order 

3         Load {𝑀𝐩𝐪
𝑡𝑜−1} for p∉C and q∈C; //C is the current tile. 

4         Load Ed(xp) for p∈C; 

5         for ti=1,…,Ti 

6             {𝑀𝑝𝑞
𝑡𝑖 }  BPinOneTile({𝑀𝐩𝐪

𝑡𝑖−1}, Ed, C); 

7         Store {𝑀𝐩𝐪
𝑇𝑖 }for p∈C and q∉C; 

8     loop through all tiles in an inverse raster scan order 

9         Load {𝑀𝐩𝐪
𝑡𝑜−1} for p∉C and q∈C; 

10         Load Ed(xp) for p∈C; 

11         for ti=1,…,Ti 

12             {𝑀𝐩𝐪
𝑡𝑖 } BPinOneTile({𝑀𝐩𝐪

𝑡𝑖−1}, Ed, C); 

13         if (to = To) Obtain b(xp) and {𝑥𝐩
∗} for p∈C;  

14         else Store {𝑀𝐩𝐪
𝑇𝑖 }for p∈C and q∉C; 

15 return {𝑥𝐩
∗}; 

 

Table 5.1: The pseudo code of the tile-based belief propagation.
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Figure 5.3: The flow of the tile-based belief propagation.

of the nodes from the memory. Then we perform belief propagation within this tile (the

BPinOneTile function in the pseudo code). Note that the boundary messages are fixed.

After a Ti iterations or after the messages in the tiles are stable, we drop all messages

inside the tiles and store all outgoing boundary messages to the memory.

However, if we only scan the image once, the results of the optimization are biased.

This is because for all tiles, the boundary messages from the right and the bottom tiles

are missed. Therefore, we re-scan the image in an inverse raster scan order. In this way

the bias is compensated. It should be noted that the bias problem must be addressed in

most BP algorithms.

Finally, it should be emphasized that the tile-based BP is different from the hier-

archical BP [104] in many perspectives. The hierarchical BP merges many nodes in

the graph to build a smaller graph and then performs BP in a hierarchical fashion, from

small graphs to the large graphs. In this way the convergence speed can be increased.

On the contrary, in the tile-based BP, the nodes in the tile are not merged into a single

one, and thus the distinctness of the nodes is preserved. Each tile is analogous to a filter

box. The input boundary messages are non-linearly filtered by the MRF in the tile into

the output boundary messages.
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Figure 5.4: Level-C data reuse for calculating the data terms.

Bi and Bi+1 are two successive blocks in the left image. Because most of their search

region in the right image is overlapped, besides the block Bi+1 itself, only B2 pixels are

needed to be loaded.

5.1.4 Cost Analysis of the Proposed Algorithm

Before we show the performance of the tile-based BP, we first show its advantages for

hardware implementation. Specifically, we analyze the memory and bandwidth require-

ment of the proposed algorithm. We will see both costs can be greatly reduced, and also

the tile-based operation can enable regular pipeline to further reduce the bandwidth and

memory requirement.

Memory: We do not need to store the messages inside the tile. In each new iteration,

the messages inside can be re-generated from the boundary messages and data terms.

Therefore, the off-chip storage of the messages becomes:

n
B2 ×4BL =

4nL
B

. (5.4)

The reduction is a factor of B. Therefore, the bigger the tile, the larger memory reduc-

tion we obtain. For B = 32, the memory for the messages becomes 0.03125% of the

original size.

Bandwidth: The bandwidth of the tile-based BP is

2(nL+
4nL
B

+
4nL
B

)To = (2nL+16
nL
B

)To, (5.5)

where the first term is for the data term, the second term is for the incoming boundary

messages of tiles, and the third term is the outgoing boundary messages of tiles.
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Original  

BP 
Proposed tile-based BP 

Proposed tile-based BP  

+ data reuse 

Block(tile)-size (B2) − 82 162 322 642 82 162 322 642 
In

te
rn

al
 m

em
o

ry
 Data terms 16 1,024 4,096 16,384 65,536 1,280 4,864 18,944 74,752 

Messages 64 4,096 16,384 65,536 262,144 4,096 16,384 65,536 262,144 

Total 80 5,120 20,480 81,920 327,680 5,120 20,480 81,920 327,680 

Factor  

(to the same tile size) 
 100% 100% 100% 100% 125% 119% 116% 114% 

E
x
te

rn
al

 m
em

o
ry

 Data terms 4,915,200  4,915,200 0 

Messages 19,660,800 2,457,600 1,228,800 614,400 307,200 2,457,600 1,228,800 614,400 307,200 

Total 24,576,000 7,372,800 6,144,000 5,529,600 5,222,400 2,457,600 1,228,800 614,400 307,200 

Factor  

(to original BP) 
100.00% 30% 25% 22.5% 21.25% 10% 5% 2.5% 1.25% 

B
an

d
w

id
th

 

Data terms 19,660,800 4,915,200 614,400 

Messages 78,643,200 4,915,200 2,457,600 1,228,800 614,400 4,915,200 2,457,600 1,228,800 614,400 

Total 98,304,000 9,830,400 7,372,800 6,144,000 5,529,600 5,529,600 3,072,000 1,843,200 1,228,800 

Factor  

(to original BP) 
100% 10% 7.5% 6.25% 5.625% 5.625% 3.125% 1.875% 1.25% 

 

 

Table 5.2: The comparison of the memory and bandwidth consumption.

We can see that now the memory and the bandwidth costs are dominated by the

storage of the data terms. However, because the algorithm is tile-based, several pipeline

and data reuse techniques used in the video compression can be applied [105] to achieve

lower bandwidth by using slightly more internal memory.

For example, in stereo estimation, the data terms Ed is calculated from the intensity

difference of the left and right correspondences. Because the proposed algorithm is

performed in tile-based, when performing BP for one tile, we can load the images and

construct the data terms of the next tile. Using the level-C memory reuse scheme [105],

we only need to load B2 bytes for calculating the data cost of one tile, as shown in Figure

5.4. Therefore, the external memory for the data terms are eliminated and the overall

bandwidth decreases from (2nL+16nL
B )To to:

2(2n+
8nL
B

)To = (4n+16
nL
B

)To, (5.6)

where the first term is for the image pixels.

Using this technique, we can further reduce the memory and bandwidth consump-
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tion, as shown in Table 5.2. Compared with to original BP, the external memory is

reduced by a factor of 10 to 80 and the bandwidth is reduced by a factor of 18 to 80.

The analysis above does not consider the convergence property. In BPM [102], one

usually have to perform 30 to 50 iterations to obtain results. In the tile-based BP, there

are two iteration coefficients (Table 5.1), the maximal inner iteration Ti and the maximal

outer iteration To. The first coefficient Ti increases linearly with the tile size. This is

because if the BP within the tile is not converged, the outgoing boundary messages

would not be representative enough, and thus the overall performance would degrade,

as we will show in the next subsection. However, Ti does not affect the memory and the

bandwidth costs. Usually, To = 2 or 3 gives a very nice results.

The bandwidth cost after the iteration number is considered is shown in Figure 5.5.

We can see that our algorithm only requires roughly 1% of the original bandwidth.

Using data reuse, the bandwidth can be further reduced to 0.25%, only 1/400 of the

original cost.

5.1.5 Performance of the Proposed Algorithm

We have shown that the proposed algorithm can significantly reduce the memory and

bandwidth. Here we use the stereo estimation to show that performance-wise, our al-

gorithm is much better than the block-based BP [101] and comparable to the original

BP.

In the experiments we use the stereo dataset on the Middlebury benchmark web-

site. Since our goal is to compare the performance of difference BP algorithms, we

adopt the simple data and smoothness term definitions according to the definitions in

[85]. The parameters such as the weighting coefficients and thresholds are fixed in the

experiments.

Different BP algorithms require different number of iterations. To reach the perfor-

mance limitation of the algorithms, we empirically choose the number of the iterations

to be large enough such that all algorithms converge for all dataset. For the original BP

(BPM) and the block-based BP, T is 50; for the tile-based BP, inner iteration Ti is set as

the block size B, and To is 10 (In fact, setting To = 3 gives visually plausible results).
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Figure 5.5: The bandwidth consumption considering the iteration numbers.

In this figure the original BP, the tile-based (TB) BP, and the TB BP with data reuse

(TBDR) of different block sizes (B = 16, 32, and 64) are compared.
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 Tsukuba Teddy Cones Venus Average

Original BP 333466 2227224 2466383 802006

Block-based 

BP 

B = 16 
386849 2393924 2646827 935663

16.01% 7.48% 7.32% 16.67% 11.87%

B = 32 
351942 2308736 2554895 853686

5.54% 3.66% 3.59% 6.44% 4.81%

B = 64 
350840 2271426 2520843 826655

5.21% 1.98% 2.21% 3.07% 3.12%

Tile-based 

BP 

B = 16 
328257 2233962 2477568 814453

-1.56% 0.30% 0.45% 1.55% 0.19%

B = 32 
330647 2230923 2478763 815300

-0.85% 0.17% 0.50% 1.66% 0.37%

B = 64 
341915 2238193 2483135 817561

2.53% 0.49% 0.68% 1.94% 1.41%

 

Table 5.3: The energy of the solutions using different BP algorithms.

The percentages indicate the increased energy to the energy of the original BP. The bold

numbers are the energies that are lower than the original BP. The red numbers are the

best results.
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(a) (b)

(c) (d)

Figure 5.6: The disparity maps of Venus from different BP algorithms.

(a) Ground truth, (b) the block-based BP, (c) the original BP, and (D) the tile-based BP.

The block size (B) is 32.
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(a) (b)

(c) (d)

Figure 5.7: The disparity maps of Tsukuba from different BP algorithms.

(a) Ground truth, (b) the block-based BP, (c) the original BP, and (d) the tile-based BP.

The block size (B) is 16.
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The energy obtained from different BP algorithms are shown in Table 5.3. We can see

that the performance of our algorithm is very close to that of the BPM. The achieved

energies can sometimes be lower than that obtained by the original BP. On average, the

energy variation is 0.19% for B = 16, 0.37% for B = 32, and 1.41% for B = 64. On the

contrary, the energy from the block-based BP, which removes all the edges between the

blocks, is very bad. All the results are much worse than those of the proposed method.

We also visually compare the resulting disparity maps from different BP algorithms,

as shown in Figure 5.6 and 5.7. We can see that the disparity maps obtained by the tile-

based BP and those obtained by the original BP are very similar. On the contrary, the

disparity maps obtained by the block-based BP are very noisy. Many textureless regions

in the image rely on the smoothness constraint to guide the disparity estimation. How-

ever, in the block-based BP the smoothness constraint across the blocks are removed, we

cannot infer the disparity values for the isolated textureless blocks. It should be noted

that we use simple data and smoothness terms in the evaluation here so the results are

worse than the state-of-the-art algorithms. However, while these state-of-the-art algo-

rithms use more complex energy functions in the MRF, they all use belief propagation

to perform the optimization. Therefore, our technique can be easily adopted in their

algorithm for efficient hardware implementation.

5.1.6 Discussion

The proposed tile-based BP algorithm can successfully reduce the memory and band-

width requirement by a factor of 80 to 400 and still retain the property of the global

optimality. We find that the tweaking of the parameters such as the damping factor in

the message passing, plays a more important role in the convergence speed and the final

energy value. Also, the tile-based BP can also be applied with other BP algorithms.

For example, we can apply tile-based BP in each level of the hierarchical BP [104] to

reduce the memory and bandwidth cost. The initial experimental results suggest that

the performance is unaffected.
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BuildMessageOriginalParallel(Mq, Mr, Ms, Mu, D, V) Latency 

for l=0,…,L-1 in parallel    

H[l] = (Mu[l]+Mr[l])+(Ms[l]+D[l]); 

end 

2DA 

for l = 0,…,L-1 in parallel   

for m = 0,…,L-1 in parallel 1 ADD 

M_part[l][m] = H[m]+ λV[m][l]; 

end 

end 

for m = 0,…,L-1 in parallel log2(L) CMP 

Mq[l] = min(M_part[l][m], Md[l]); 

end 

DA + 
log2(L)DC 

 

Table 5.4: The pseudo code of the message construction in original BP.

5.2 Fast Message Construction

The tile-based BP has greatly reduced the bandwidth and memory costs of the BP al-

gorithm. However, the computational complexity of the message construction is still a

bottleneck to be solved. Let’s repeat the message construction equation here:

mt
(p,q)(xq) = min

xp∈X

(
Es(xp,xq)+Ed(xp)+ ∑

s∈N(p)\q
mt−1

(s,p)(xp)
)
. (5.7)

Note that the last term in the summation can be reused for constructing different en-

tities. Therefore, constructing a L-D message needs L(3 + L additions and L(L− 1)

comparisons, and the computational complexity for the whole image is proportional to

O(nL2). In stereo estimation of a VGA-sized image pair with 60 disparity values, a

single BPM iteration requires 4.64G additions and 4.35G comparisons.

The pseudo code of the maximally parallelized version of the original message con-

struction is shown in Table 5.4. The function loads three incoming messages Mu, Mr,

Ms, the local data term D, and the smoothness term V (i.e., the tabularized Es(xp,xq)),
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BuildMessageEfficient(Mq, Mr, Ms, Mu, D, V)  Latency 

for l=0,…,L-1 in parallel 

H[l] = (Mu[l]+Mr[l])+(Ms[l]+D[l]); 

end 

2DA 

for l = 1,…,L-1 L-1 ADD and L-1 CMP 

M[l] = min(M[l-1]+ λ, M [l]); 

end 

for l = L-2,…,0 L-1 ADD and L-1 CMP 

M[l] = min(M[l+1]+ λ, M [l]); 

end 

2(L-1)×(DA+DC) 
 

//Minimum truncation phase 

M_min=M[0]; 

for l = 1,…,L-1 in parallel log2(L) CMP 

M_min = min(Md[l] , M_min); 

end 

for l = 0,…,L-1 in parallel 1 ADD and 1 CMP 

Mq[l] = min(M[l], M_min+λT); 

end 

log2(L)DC+ DA+Dc 

 

Table 5.5: The pseudo code of the existing fast message construction algorithm.
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BuildMessageProposed(Mq, Mr, Ms, Mu, D, V) Latency 

for l=0,…,L-1 in parallel    

H[l] = (Mu[l]+Mr[l])+(Ms[l]+D[l]); 

end 

2DA 

//The local minimum cost comparison phase 

for l = 0,…,L-1 in parallel 1 ADD 

for m = -T+1,…,T-1 in parallel 

M_part[l][l+m] = H[l+m]+ λV[l-m]; 

end 

end 

for l = 0,…,L-1 in parallel  

for m = -T+1,…,T-1 in parallel log2(2T-1) CMP 

M[l] = min(M_part[l][l+m], M[l]); 

end 

end 

DA+log2(2T-1)DC 

//The global minimum threshold phase 

for l = 0,…,L-1 in parallel log2(L) CMP 

M_min = min(M_part[l][l], M_min); 

end 

log2(L)DC 

//Global truncation phase 

for l = 0,…,L-1 in parallel 1 ADD and CMP 

Mq[l] = min(M[l], M_min+λK); 

end 

DA+ DC 

 

Table 5.6: The pseudo code of the proposed fast, hardware-oriented message construc-

tion algorithm.
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and generates the outgoing message Mq. The for loops that can be performed in parallel

are annotated with the keyword “in parallel”. Let DA and DC denote the latency of the

adder and comparer, respectively. The latency of each sub-routine is annotated with the

blue words, and the overall latency is shown at the right.

In original BP, the messages can be calculated by first generating all L2 hypotheses

(M part in Table 5.4), and then finding the L minimal final entities from them in parallel.

The latency of this operation is log2(L)DC. However, it requires L2 temporary registers

and operators. If we give up the parallelism, it takes O(L2) cycles.

The software-efficient algorithm in [104] is shown in Table 5.55. The entities are

updated sequentially in two forward-backward passes and then truncated by the thresh-

old. The sequential operation is suitable for software but causes a great amount of

latency and low throughput in hardware. In hardware implementation, it is actually

much slower than the parallelized original BP.

While the algorithm in [104] only applies to the linear or quadratic smoothness

terms, we find that in many stereo estimation applications or many other low-level vi-

sion applications, the smoothness terms are usually robust to outliers [106], [107],

[108], [84]. That is, the smoothness terms grows as the value of |xp− xq| increases,

but as the value becomes larger, the increasing rate gradually decreases. After the value

reaches a threshold, the smoothness term becomes constant. This is because when two

labels becomes too distinct from each other, they should have no correlation so a adding

constant penalty would be more proper than adding an arbitrary large penalty.

Several typical robust functions used in disparity estimation, denoising, and tone

mapping applications are shown in Figure 5.8. We can see that after a threshold T , the

robust functions all become constant. We attempt to utilize this property in the message

construction. Let H(xp) = Ed(xp) + ∑s∈N(p)\q mt−1
(s,p)(xp) and assume the smoothness

term is a robust function Es(xp,xq) = ρ(xp− xq) , then Equation 5.7 becomes

mt
(p,q)(xq) = min

xp∈X

(
ρ(xp− xq)+H(xp))

)
. (5.8)

We can consider the hypotheses generated by a single H(xp) as a signal and plot all

signals together, as shown in Figure 5.9. Each signal has a single peak is constant when

5This is the version for the linear truncated model. Please refer to [104] for the quadratic model.
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Figure 5.8: The robust functions commonly used as the smoothness terms in MRF.
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Figure 5.9: The hypotheses and the final message.
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Figure 5.10: (a) The generation of H[i]. (b) The generation of hypotheses.

the index is T away from the peak.

The final message is determined by the lower envelope (shown in red) of all signals.

One important observation is that only the global minimum threshold generated by the

smallest H(xp) will present in the envelope. Therefore, all other constant hypotheses

can be ignored. Therefore, the number of comparisons can be reduced from O(L2) to

O((2T −1)L+L) = O(2T L) or O(L) when T is a small constant. In many applications,

T much smaller than L and thus the computation is greatly reduced. Note that this

reduction of the computation does not change the result of the message construction,

and thus it is applicable to all robust functions.

The pseudo code of the proposed algorithm is shown in Table 5.6. The smoothness

term table becomes an one dimensional array, and K is the constant penalty value. In

the local minimum cost comparison phase, all non-constant hypotheses are generated

and compared. The result is a L-D temporal message. In the global minimum threshold

phase, we find the smallest H(xp) (M min). The final message is the minimum of the

temporal message and M min + λK. It should be noted that these two phases can be

processed in parallel.



129

MinMin

Min

Min

Min

Min

Min

+T

…

H0

H1

H2

HL-1

Min
Threshold

Min

Min

Mt
pq(i)

H iH i-1
+λ

H i+1
+λ

H iH i-1
+λ

V i-1
,i

H i+1
+λ

V i+1
,i

H i-2
+λ

V i-2
, i

Mt
pq(i)

(a) (b)

Min

Figure 5.11: The processing elements.

(a) The original PE and data flow. (b) The proposed PE and data flow. The grey items

have the same structure but different inputs and work in parallel.

UMC90nm@10ns 
L=64 

Original Proposed Reduction ratio 

Gate count 533.8k 30k 94.38% 
 
 

Table 5.7: Comparison of gate count.

5.2.1 Hardware Implementation

We implement a VLSI processing element based on the proposed algorithm. In the

PE, we set T = 2. The generation of H[i] and the non-constant hypotheses are shown

in Figure 5.10. Each H[i] can be generated by an adder tree and all hypotheses are

generated in parallel. The PE’s for the next step in the message construction is shown

in Figure 5.11. We can see that in the original BP, each PE has many fan-in and thus the

comparer tree is very large. On the contrary, in the proposed algorithm, each PE only

has 3 input and thus the latency and size can be very small.

We synthesize the circuits by using the UMC90nm library with the critical path

constraint 10ns. This means that the synthesized circuit can construct a message within
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10ns. Compared with the original message computation method, the proposed method

can reduce 94.4% of the gate count, as shown in Table 5.7. This is not only due to the

number of the operations is smaller, but also due to the fact that each hypothesis has to

drive fewer operators.

5.2.2 GPU Implementation

We implement this idea using CUDA (Compute Unified Device Architecture), a library

developed by NVIDIA Corp. for programming the GPU in a C-like language [109],

[110]. CUDA makes the GPU programming almost identical to the standard CPU pro-

gramming and makes the data transferring between the main memory and the graphics

memory much easier than before. As a result, it has been wildly applied to scientific

and financial computing, signal processing, machine learning, video processing, etc6.

Preliminary on CUDA: A GPU is consisted of many multiprocessors, and each

of them is consisted of many PE’s, a shared memory, and a shared texture cache. For

instance, the NVIDIA 8800GTS which we used in the experiment has 12 multiproces-

sors and each has 16 KB shared memory and 8 PE’s. Each PE in a multiprocessor

executes the same instruction in every cycle on different data. The communication be-

tween the multiprocessors is through the global device memory, but the operation of the

multiprocessors are not synchronized.

In the CUDA programming environment, the programmer specifies the degree of

parallelism by controlling the number of threads. The programmer also specifies a

collection of threads that require synchronization or sharing memory as a block. The

collection of all blocks in a single execution is called a grid. All threads in the same

grid have identical instruction, and use the thread ID and block ID to perform data

addressing.

A collection of threads can be executed on the GPU in parallel. The threads in a

block are executed by a single multiprocessor at a given time. A warp is a collection

of threads that are scheduled for execution simultaneously. The warp size is fixed for

a specific GPU. However, the number of the threads can be much larger than the total

6Many examples can be found at http://www.nvidia.com/ .
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available resource. The CUDA library and GPU automatically perform the scheduling

to hide the latency due to memory (device memory) access and task switching. Since

the memory access is usually the performance bottleneck, one should maximize the

thread number as long as the memory access does not grow exponentially.

Our Implementation : We implement the BPM algorithm using CUDA. In each

iteration, the BPM algorithm propagates the messages from left to right, from bottom to

top, from top to bottom, and from right to left. The updated messages are immediately

used by the neighboring node in constructing the outdoing messages. Let assume the

image size is N×N. Because when sending the messages in one direction, all rows

(or columns) are independent of each other. Therefore, the job can be partition into N

blocks.

However, if we use the method in [104] to construct the message, each block can

only has one thread due to the sequential nature of the algorithm. On the contrary, our

algorithm can be mapped L + 1 threads. The first L threads first generate H[i]. After a

synchronization, The first L threads perform the local minimum cost comparison phase

in Table 5.6, and the last thread performs the global minimum threshold phase. After

a synchronization of the two phases, the first L threads perform the global truncation

phase 7.

Results: We use the disparity estimation problem as the benchmark. We use NVIDIA

8800GTS on a computer with Intel 3.0GHz CPU and 2GB memory to perform the ex-

periments. The execution times are averaged over 10 runs.

We implement four different message construction methods and use the BPM [102]

as the message passing scheme. We use the linear truncated function as the smoothness

since all other robust functions would be extremely slow on CPU. In the first implemen-

tation, we perform the min-convolution method [104] on CPU, which is the most effi-

cient method on CPU. In the second implementation, we perform the min-convolution

on GPU. Each row/column is executed by a thread. In the third one, we perform the

proposed message construction method on GPU. Each entity of the message is con-

structed by a thread, and the global minimum threshold phase is performed by another

7In the experiment we find that the synchronization steps are not necessary because all operations are

very simple.
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Tsukuba 
384×288, L=16 

BPM+ 
distance transform

CPU 

BPM+ 
distance transform

GPU 

BPM+ 
proposed message 

construction 
GPU 

BPM+ 
proposed message 
construction + scan

GPU 

Calculating data 
term 17.72 0.03 

Speedup factor 1.00 663.70 
Memory transfer 0.00 27.02 

One BPM  
iteration 173.94 102.31 21.75 19.46 

Speedup factor 1.00 1.70 8.00 8.94 
Generate depth 

map 10.52 0.03 

Speedup factor 1.00 361.34 
Total  

(10 BP iterations) 1767.63 1050.20 244.56 221.63 

Speedup factor 1.00 1.68 7.23 7.98 
 

 
Table 5.8: The execution time of the test dataset Tsukuba.

Cones 
450×375, L=60 

BPM+ 
distance transform

CPU 

BPM+ 
distance transform

GPU 

BPM+ 
proposed message 

construction 
GPU 

BPM+ 
proposed message 
construction + scan

GPU 

Calculating data 
term 17.72 0.03 

Speedup factor 1.00 583.79 
Memory transfer 0.00 29.70 

One BPM  
iteration 771.43 528.74 113.92 112.94 

Speedup factor 1.00 1.46 6.77 6.83 
Generate depth 

map 44.32 0.03 

Speedup factor 1.00 1523.14 
Total  

(10 BP iterations) 7776.39 5317.16 1168.99 1159.11 

Speedup factor 1.00 1.46 6.65 6.71 

 

Table 5.9: The execution time of the test dataset Cones.
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single thread. Each row/column is processed in parallel.

In the final implementation, instead of using a single thread to perform the global

minimum threshold phase, we use the original L threads to do it after the local mini-

mum cost comparison phase is done. The global minimum threshold can be found in

O(log2(L)) cycles instead of O(L) by using the scan-alike operator [111]8. We make

this implementation to understand the bottleneck of the proposed method.

The averaged execution time of different BP implementations are for two Middle-

bury datasets listed in Tables 5.8 and 5.9, respectively. We perform 10 BPM iterations

in all implementations9. The execution times of different steps are shown separately,

and the unit is ms. For the GPU implementations, we need to transfer the data from the

main memory to the video memory, which requires additional time.

For the dataset Tsukuba, the disparity range is 16. If we directly implement the

min-convolution method on GPU, the speedup factor is rather limited, only 1.68x. It

is because the number of the threads does not fill the computation power of the GPU.

Many cycles are wasted in waiting the data transferring between the video memory and

the local memory.

Our proposed method can better utilize the GPU resource, and thus the speedup

factor is much larger (7.23x). When the scan-alike operator is applied, the speedup fac-

tor can be further increased (7.98x). This suggests that the bottleneck of the proposed

method is the global minimum threshold phase. Therefore, the best method is to assign

2L threads for each node. The first L threads perform the local minimum cost compari-

son phase, and another L threads perform the global minimum threshold phase. While

this is what we actually do in the VLSI implementation, this job partition is difficult in

the CUDA programming model.

For the dataset Cones, the disparity range is 60, and therefore the memory con-

sumption and the bandwidth requirement is larger than the previous dataset. The task-

switching would be also more frequent. The direct implementation of the min-convolution

8In the terminology of the VLSI design, we use a comparator tree to find the global minimum thresh-

old.
9For 2 iterations, the results are already much better than those of most stereo algorithms for the

real-time applications.
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on GPU gives less performance gain than it did in the Tsukuba dataset because more

time wasted in data transferring. Our method is also slightly affected, but still much

faster than the min-convolution. The overall speedup factor is 6.71 when the scan-alike

operator is applied.

Note that our proof-of-concept programs are not fully optimized. The performance

can be further improved if the memory conflict problem is addressed, the data is stored

at the cache-enabled constant or texture memory, and if the whole program is per-

fectly mapped to the shaders. However, the ratio between the original and the proposed

method should be only slightly affected.

5.2.3 Discussion

To summarize, we propose a fast message construction algorithm to remove the com-

putation bottleneck in parallelizing the belief propagation. By exploiting the property

of the robust function, a great amount of redundant operations are removed.

The proposed message construction algorithm can be used in any BP algorithm. If

we combine it with the proposed tile-based BP algorithm (Section 5.1), we would have

a low-complexity, low-memory, and low-bandwidth belief propagation implementation.

This makes it possible to perform high-performance global optimization algorithm to

high-resolution images on a memory limited parallel platform.

5.3 Noise-Aware Demultiplexing

In Section 3.2.2 we apply multiplexing to improve the quality of the acquired light field.

We show because the noise of the imaging sensors is not i.i.d, the multiplexing patterns

must be optimized according to the noise characteristics.

However, while the noise is considered in designing the multiplexing patterns, the

demultiplexing does not consider the effect of the noise. Because the intensity of the

acquired samples are different, some samples are noisier than others and less reliable.

In this section, we exploit this property and present a new noise-aware demultiplexing

algorithm.
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5.3.1 Formulation

We formulate the demultiplexing process as an estimation of the MAP solution of the

probability function. Let’s first review the general multiplexing equation:

y = Wx+n, (5.9)

where y = [y1,y2, ...yN ]T is the observation vector, W is the multiplexing matrix where

the i-th row wi is the multiplexing pattern for the i-th observation, x = [x1,x2, ...,xN ]T is

the vector of the true signals, and n is the noise vector. The demultiplexing process can

be casted as a MAP estimation of the random variable:

x∗ = argmax
x

P(x | y;W), (5.10)

according to the Bayesian rule and assume the true signal is uniformly distributed, we

have

P(x | y;W) =
P(y | x;W)

P(y)
∝ P(y | x;W). (5.11)

Because each observation is independently sampled,

P(y | x;W) =
N

∏
i

P(yi | x;W). (5.12)

The goal of demultiplexing is to recover the most probable signal x∗ from the ob-

servation, that is,

x∗ = argmax
x

N

∏
i

P(yi | x;W). (5.13)

In the following we focus on the visual signal such as the light field [28] or the

reflectance field [65] captured by imaging sensors. Therefore, we use the noise model

described in section 3.2.2 and [67], [68]. For a true signal with magnitude P, the noise

of the observed signal is normally distributed with zero mean and variance σ2 as

σ
2 = σ

2
c +σ

2
p = σ

2
c +Pσ

2
0. (5.14)

Put this into Equation 5.9, we have

P(yi | x;W) =
(
2π(σ2

c +(Wx)iσ
2
0)
)−0.5exp

(
− 1

2
(yi− (Wx)i)2

σ2
c +(Wx)iσ

2
0

)
. (5.15)
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If we put Equation 5.15 into Equation 5.13 and take the negative log, we have

x∗ = argmin
x
− log

N

∏
i

P(yi | x;W)

= argmin
x
−

N

∑
i

logP(yi | x;W)

= argmin
x

N

∑
i

(
(yi− (Wx)i)2

σ2
c +(Wx)iσ

2
0
+ log

(
2πσ

2
c(1+

(Wx)iσ
2
0

2πσ2
c

)
))

≈ argmin
x

N

∑
i

(
(yi− (Wx)i)2

σ2
c +(Wx)iσ

2
0
+
(

σ2
0(Wx)i

2πσ2
c

))
, (5.16)

where the last equality comes from the first-order approximation of the logarithm func-

tion. The solution that minimizes this objective function is the MAP solution. We

can see that the observations are not equally important in this formulation. When the

multiplexed signal (Wx)i is larger, the variance of the noise is larger. As a result, the

estimation error (yi− (Wx)i)2 is less reliable and is weighted less than others. Also

a L1 regularization term is present in the objective function. Therefore, the problem

becomes a weighted L1 regularized optimization problem. It should be noted that when

σ2
0 = 0, the objective function becomes the typical L2 norm equation and the optimal

solution would be W−1y, same as the result in the traditional demultiplexing.

5.3.2 Optimization

In Equation 5.16, the estimation error is weighted by the unknown signal and thus

cannot be directly evaluated. However, we can assume σ2
c +(Wx)iσ

2
0 ≈ σ2

c + yiσ
2
0 and

have

x∗ = argmin
x

N

∑
i

(
(yi− (Wx)i)2

σ2
c + yiσ

2
0

+
σ2

0(Wx)i

2πσ2
c

)
. (5.17)

This is a standard L1 regularized least-square problem. Note that this approximation is

unbiased, and we can substitute the obtained x∗ back to Equation 5.16 and iteratively

perform the optimization.

5.3.3 Results

We use the interior-point method in [112] to perform the optimization. It uses precondi-

tioned conjugate gradient method to compute the search step and thus converges much
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Figure 5.12: The MSE of different multiplexing schemes.

We perform the simulation with different noise characteristics. (a) σ0 = 0, and (b)σ0 =

0.4.

faster than other methods.

We perform a synthetic experiment here. The true signal is 25-D and the dynamic

range of each sample is (0,1). We use the optimal multiplexing patterns described in

Section 3.2.2 to obtain the multiplexed signal. The mean-square-error (MSE) of the

recovered signals are shown in Figure 5.12. We can see that when there is no signal-

dependent noise, the results of the normal demultiplexing and the proposed demulti-

plexing methods are identical and better than the signal sampled without multiplexing.

When there is only shot noise (σ0 > 0 and σc = 0), the signal without multiplexing is

the best, as described in [66]. However, for the general cases (σ0 > 0 and σc > 0), the

signals recovered by the proposed algorithm are consistently better than that recovered

by the normal demultiplexing method. The average MSE reduction is 11.0%.

5.3.4 Discussion

In this section we have propose a new noise-aware demultiplexing method. We have

formulated the demultiplexing as a MAP estimation and showed that it is equivalent to a

L1-regularized least-square problem. The experimental results show that the proposed

method can recover a signal with lower errors.

While the simulation results look promising, we believe this method can be extended
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in many ways. First, we assume the signal is uniform-distributed so our algorithm is

not context-aware. For example, in programmable aperture photography, the angular

information of each spatial location is independently multiplexed, but it is possible

to jointly demultiplex the spatially neighboring samples to further improve the data

quality. Second, if the statistics of the signal is known, it is possible to optimize the

multiplexing patterns using the same Bayesian framework.

5.4 Summary

In this chapter we have developed the algorithms that can not only benefit the light field

acquisition but also other computer vision applications. We have presented a modified

belief propagation scheme and a fast message construction algorithm. These contri-

butions make it possible to perform global optimization on large images in a highly

parallel fashion.

We also have presented a noise-aware demultiplexing algorithm. By formulating the

problem in a probabilistic framework, we have shown that the optimal demultiplexing is

equivalent to minimizing a L1-regularized least-square problem. This algorithm can be

used to many different applications, including illumination multiplexing and capturing

the light field and the reflectance field.



Chapter 6

Conclusion

In this dissertation, we have applied the light transport theory to analyze the effect of

the camera to the light field in a signal-processing framework. The analysis shows that

the light ray traveling, the lens refraction, and the radiance integration of the sensor, can

be described by a single photographic operator and a slicing operator.

Our model shows that there is no filtering applied to the light rays in the photogra-

phy process. The light field inside the camera is a transformed and modulated light field

of the outside world. This model can explain many photographic effects in the image

formation process, which were described by many independent models. The perspec-

tive transform of the scene results from the shearing of the light field due to light ray

traveling and the lens refraction. The defocus blur on the image plane is a combination

of the convolution in the frequency domain and the slicing operator. These effects can

also be naturally expressed in the frequency domain. The results obtained by our model

are quantitatively identical to the traditional methods.

We have applied the derived model to other applications. First, we show that the

operation of the digital refocusing is equivalent to a linear transform operator to the

light field. Second, we build a novel method to fuse several different focused images

into an all-focused one. This method requires no per-pixel depth map estimation. It

can be performed efficiently in the light field frequency domain. Third, we use the

spectrum analysis to suggest the parameter settings of the light field cameras. Finally,

we formulate a novel depth-detection problem and propose a new algorithm to solve it.
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Without searching for the correspondences between the images of different viewpoints,

we directly estimate the possible depths from the spectrum of the light field. While

the focusness measurements in the spectrum are not fully reliable, we re-formulate the

problem as a max-cover problem and efficiently solve it using dynamic programming.

We have proposed a novel device, dubbed programmable aperture, to capture the

light field. By adjusting the transmittance of the aperture dynamically, we can sequen-

tially capture the light field without moving the camera. To improve the acquisition

efficiency, we optically multiplex the light field and then recover the light field signal

by demultiplexing. The optimal multiplexing scheme is found from an optimization

process. This method can capture high quality light field with the spatial resolution

identical to the sensor resolution, which is orders of magnitude higher than the other

light field cameras. The angular resolution, the sampling grid, and the pre-filter kernel

are all fully adjustable. Also it requires no expensive micron scale manufacture and

tedious calibration.

The 4D light field data captured by our programmable aperture and other light field

cameras have unique distortions to be removed. We have therefore presented novel

algorithms to address them. First, we analyzed the photometric distortion in the light

field and showed that it is fundamentally different to the one in traditional images. We

then proposed a novel algorithm that uses feature matching and iterative optimization

to estimate and remove the photometric distortion.

Second, we have proposed a novel multi-view depth estimation algorithm to infer

the scene geometry from the captured light field. We have formulated the program as a

MAP-MRF problem and used an accurate occlusion model to describe the multi-view

occlusion events. The problem is efficiently solved in an iterative fashion and the cross-

bilateral filtering is used to increase the convergence speed. The experimental results

showed that the proposed algorithm is comparable to the state-of-the-art algorithms.

We have used the estimated depth maps to assist the image-based rendering. More

specifically, during the view interpolation, each light field sample is warped according

to its depth value. In this way the ghosting effect is removed. We combined this tech-

nique with the proposed light transport analysis to synthetically increase the angular
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sampling rate to reach the Nyquist rate and thus remove the aliasing in the refocused

images.

Manually specifying the refocusing parameters is a tedious task. To address this

issue, we have proposed a novel feature-based refocusing interface. By using robust

feature matching and homography estimation, we allowed users to intuitively change

the focus setting and obtain the refocused image in real-time.

Efficient processing of the high resolution and high dimensional multi-view or light

field data is a challenge and important issue. The memory, bandwidth, and computa-

tion requirements of most algorithms grow exponentially to the input data. We have

proposed a tile-based belief propagation algorithm and a parallel message construction

algorithm to solve this problem. The proposed methods successfully remove most re-

dundant computations and data in the message passing operation while the performance

is unaffected. It can be easily mapped on the parallel hardware architectures such as

VLSI circuit and GPU. Finally, we have proposed a new noise-aware demultiplexing

algorithm. By formulating the noise-dependent multiplexing process in a probabilis-

tic framework, we can find the MAP solution by solving a L1-regularized least-square

problem.

In summary, this dissertation covers several topics about the efficient analysis, ac-

quisition, and processing of the high dimensional, high resolution visual data. The light

transport analysis re-formulates the whole image formation process, and the proposed

devices and algorithms can efficiently generate excellent results. We believe many pro-

posed techniques can be readily applied to the industry, such as the programmable aper-

ture, the feature-based refocusing, and the modified belief propagation algorithm. We

also hope that the theoretical part of the dissertation can inspire new researches in the

computer vision, computer graphics, and image processing.



142



Bibliography

[1] Edward H. Adelson and James R. Bergen, “The plenoptic function and the el-

ements of early vision,” Computational Models of Visual Processing, pp. 3–20,

1991.

[2] Parry Moon and Domina Eberle Spencer, The photic field, MIT Press, 1981.

[3] Marc Levoy and Pat Hanrahan, “Light field rendering,” in SIGGRAPH ’96: Pro-

ceedings of the 23rd annual conference on Computer graphics and interactive

techniques, New York, NY, USA, 1996, pp. 31–42, ACM Press.

[4] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen,

“The lumigraph,” in SIGGRAPH ’96: Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques, New York, NY, USA, 1996,

pp. 43–54, ACM Press.

[5] Berthold K.P. Horn, Robot Vision, MIT Press, 1986.

[6] Shree K. Nayar, Masahiro Watanabe, and Minori Noguchi, “Real-time focus

range sensor,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 18, no. 12, pp. 1186–1198, Dec 1996.

[7] Dan B Goldman and Jiun-Hung Chen, “Vignette and exposure calibration and

compensation,” in ICCV ’05: Proc. the 10th IEEE International Conference on

Computer Vision, 2005, pp. 899–906.

[8] James T. Kajiya, “The rendering equation,” SIGGRAPH Comput. Graph., vol.

20, no. 4, pp. 143–150, 1986.

143



144

[9] Alan V. Oppenheim and Alan S. Willsky, Signals and Systems, 2nd Edition,

Prentice-Hall, 1997.

[10] Paul S. Heckbert, Fundamentals of Texture Mapping and Image Warping, Ph.D.

thesis, University of California at Berkeley, 1989.

[11] Jin-Xiang Chai, Shing-Chow Chan, and Heung-Yeung Shuand Xin Tong,

“Plenoptic sampling,” in SIGGRAPH ’00: Proceedings of the 27th annual con-

ference on Computer graphics and interactive techniques, New York, NY, USA,

2000, pp. 307–318, ACM Press/Addison-Wesley Publishing Co.

[12] Aaron Isaksen, Leonard McMillan, and Steven J. Gortler, “Dynamically repa-

rameterized light fields,” in SIGGRAPH ’00: Proceedings of the 27th annual

conference on Computer graphics and interactive techniques, New York, NY,

USA, 2000, pp. 297–306, ACM Press/Addison-Wesley Publishing Co.

[13] Matthias Zwicker, Wojciech Matusik, Frédo Durand, and Hanspeter Pfister, “An-
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