REAL-TIME VIDEO DENOISING ON MOBILE PHONES

Jana Ehmann, Lun-Cheng Chu, Sung-Fang Tsai and Chia-Kai Liang

Google Inc.

ABSTRACT

We present an algorithm for real-time video denoising on mo-
bile platforms. Based on Gaussian-Laplacian pyramid de-
composition, our solution’s main contributions are fast align-
ment and a new interpolation function that fuses noisy frames
into a denoised result. The interpolation function is adap-
tive to local and global properties of the input frame, robust
to motion alignment errors, and can be computed efficiently.
We show that the proposed algorithm has comparable quality
to offline high-quality video denoising methods, but is orders
of magnitude faster. On a modern mobile platform, our work
takes less than 20ms to process one HD frame, and it achieves
the highest score on a public benchmark.

Index Terms— video denoising, real-time processing, mo-
bile platforms, pyramid decomposition

1. INTRODUCTION

Videography on mobile phones has become a part of our ev-
eryday lives due to its convenience. Phone cameras are used
for recording, video chatting, and even live streaming. How-
ever, the quality of mobile videos is still inferior to the ones
taken by professional cameras, especially in low light condi-
tions. Mobile imaging sensors are much smaller and noisier,
and it is difficult to remove temporal noise using single frame
spatial denoising methods. Although videos include temporal
information for effective denoising, advanced video denois-
ing algorithms are too slow for mobile phones: most of them
are not even real-time on desktops (Sec. 2).

In this paper, we present a novel highly effective and effi-
cient temporal denoising method. First, we propose a new
non-linear filter to address spatially varying noise and motion
compensation error. Second, we show that an optimized one-
tap temporal recursive filtering can achieve competitive de-
noising quality. Third, we design the motion estimation and
filtering blocks such that they share the bulk of the computa-
tion by using a common image pyramid representation.

Our algorithm can achieve 30+ fps performance on HD res-
olution on modern mobile platforms, with denoising quality
that is comparable to the state-of-the-art offline methods. We
integrate the proposed algorithm into the image processing
pipeline on Google Pixel 2, which obtained the highest rating
in video quality on the public DxO benchmark [1].

2. BACKGROUND

Video denoising is a mature topic that has been extensively
studied and we only briefly review the relevant work here.

The early methods extend non-local means [2], bilateral fil-
tering [3] or wavelet denoising [4], but do not consider frame
or object motions explicitly. VBM3D [5] and VBM4D [6] ex-
tend BM3D [7] with temporal block alignment and grouping,
and [8] extend 3D DWT with motion compensation. Some
methods use dense optical flow [9, 10] to further improve their
results.

Note that none of these methods are designed for real-time
mobile applications. Even on the desktop, most other tech-
niques cannot achieve real-time performance at CIF resolu-
tion (let alone HD) unless a powerful GPU is used. More ef-
ficient methods use a single aligned block per frame [11, 12,
13]. Nonetheless, they need more frames to gather enough
blocks, and are still too slow for mobile video recording.

3. REAL-TIME VIDEO DENOISING

Our algorithm has two main stages: an alignment stage that
computes the displacement map between two consecutive
frames and a merging stage to combine the input frame and
previous frame’s output. The result of the merging is used as
one of the inputs to the next frame’s merging stage. Note that
our algorithm does not perform spatial filtering to save com-
putational time, although the pyramid framework implicitly
makes it a spatio-temporal method. With proper alignment,
even pure recursive temporal filtering can converge to a very
low-noise result [14].

The flowchart is shown in Figure 1. Frame at time ¢ is decom-
posed into a Gaussian and a Laplacian pyramid. The Gaussian
pyramids are used in alignment (Sec. 3.1), while the Lapla-
cian ones are used in merging (Sec. 3.2). The merged pyramid
is collapsed to create the final output. We implement the algo-
rithm with CPU/GPU and model the real noise on the mobile
platform (Sec. 3.3).

In following sections, GY9 denotes a Gaussian pyramid level
g € [0,..., Ng], L' denotes a Laplacian pyramid level [€
[0, ..., Nz], with Ng and Ny, denoting pyramid heights, and
pixel location within a given pyramid level is given by p =
(z,y). The noise variance map for each Laplacian pyramid
level is given in n!(p).

Gaussian —)
‘ Framet }‘ Pyramid Creation '
aussian t-1
kll‘ i
! Displacement
[i map t
Laplaci i'
. aplacian .
Pyramid . Noise Map
Collapse P!”a”."d Estimation
Creation

\—-{ Merge

Filtered
Laplacian t-1

l
=

Laplacian t

i

Filtered
Laplacian t

Fig. 1: Flowchart of proposed algorithm. Blue blocks are
processing units and white ones are image buffers.

3.1. Alignment

We use a hierarchical method to compute a displacement map
A(p) with a large search range. Our algorithm is based on
the fast optical flow method of [15] with several optimiza-
tions. We also perform iterative inverse Lucas-Kanade search
at each G9, but restrict the motion vector computation to ver-
tices of a coarse grid with a step size of 16-pixels in each
dimension.

In our experiments, we found that integer-precision motion
vectors at the coarser pyramid layer are accurate enough to
initialize the motion vector search for the next finer layer.
Hence, we can remove all unnecessary interpolation for sub-
pixel alignment error calculation, except for the final layer.
Finally, to increase the motion search range and reduce the
iteration count, we use the horizontal and vertical 1D projec-
tions at the coarsest layer to estimate the global motion by
cross correlation. Our optimized method is 4x faster than the
reference one in [15].

3.2. Merging

In the merging stage, we combine the current Laplacian pyra-
mid with the Laplacian pyramid of the previous frame. The
cornerstone of our proposed algorithm is the fact that we per-
form IIR processing, meaning that we use the previously fil-
tered result as opposed to the non-processed previous frame.
The IIR formulation has stronger denoising properties, but
has the drawback of potential artifact propagation. We de-
signed our interpolating function to be robust to alignment
errors such that, even in case of erroneous alignment artifacts
like ghosting, non-existing features or excessive blurring are

not introduced.

We first use the displacement map to form the aligned pyra-
mid £, using the previous pyramid Lfl):

L,(p) = L,(p+ A (p)), (1)
where Al is a scaled version of A at level [.

The resulting pyramid layer £! is calculated as an interpola-
tion between the current layer £!, and £!:

L5.(p) = Ze(p) - Le(p) + Ly (p) - La(p), 2
where 7. and Z, are interpolating functions which adapt to
pixel locations, values, and noise levels.

To better explain how the intepolating functions are designed,
let us denote L4 (p) = LL(p) — L. (p) as the pixel value
difference. By rearranging Eq. 2 we obtain:

L,.(p) = wi - Li(p) +w, - (Lo(p) +T-Lx(P). (3)
In this formulation, wf: is the minimum value of Z, wé, is the
maximum value of Z,, and 7 is the interpolation factor which
determines the final weights for current and previous pixel.
We explain these values in detail below.

3.2.1. Interpolation bounds w' and wé

The denoising strength limits in our algorithm are defined by
w!, and wé. If we set w! < w!, we can achieve stronger de-
noising power by emphasizing the previously filtered compo-
nent. Note that because they are functions of pyramid level,
we can choose to perform stronger denoising in certain fre-
quency bands, where we are more confident that we would
have less artifacts from alignment errors.

Due to averaging, high-frequency features such as textures
and edges sometimes get smoothed out if the alignment is off
even by few pixels. To compensate for this issue, we make
one key modification to interpolation weights:

wh 4wl > 1. 4)
By effectively boosting the weighted average with a factor
slightly above 1, we can restore high-frequency features while
retaining the denoising strength.

In practice, we adaptively adjust w’ and wjlj. For well-lit
scenes, we can keep enough details without enhancing the
higher frequencies, while for dimly lit scenes, the oversharp-
ening is less visible, and we can safely raise the amplitude of
higher frequencies.

3.2.2. Interpolation factor T

The design of Z is the key differentiator of our algorithm. It
takes into account various spatio-temporal effects in order to
achieve good denoising strength with minimal artifacts. This
is done by considering the amount of expected noise and the
actual difference between two pyramid values. We also con-
sider the patch-wise alignment error — for cases where we do
not have a good matching patch in the previous frame and we
need to be more conservative in order to not introduce any
artifacts to the current frame.

Classic Wiener Filter Sigmoid Filter

.
1)

N
S

Noise std
8

Noise std
8

40 40

100 20 40 60 80
Absolute pixel difference

20 40 60 80
Absolute pixel difference

Fig. 2: Interpolator functions.

100

The value of Z always lies in the range of [0, 1]. As we can
see in Eq. 3, higher Z would lower the denoising strength as
the contribution from previous frame is reduced. We compute
two interpolation factor candidates and pick the larger one:
T = max(Z.,Za), where Z, is based on the alignment error
and Z is based on pixel difference.

In regions with good alignment accuracy, Za dominates over
T.. For such pixels, we can confidently interpolate between
the current and previous pyramid. However, in areas where
the alignment error is large, Z. would dominate:

Z. = max(1, Al (p) - C.), 5)
where Al (p) is the block matching error from the alignment
stage. The tuning parameter C, sets the limit of acceptable
motion alignment error. Z. also turns off denoising in areas
with gross alignment error due to occlusions, objects moving
in and out of frame, etc.

For Za, one popular choice is the well-known Wiener filter:
£h(p)? + ' (p)
It has been used in multi-frame Fourier and wavelet denois-
ing [13, 16] and worked reasonably well when the alignment
accuracy is high. However, due to higher dynamics in the
scene and limited computational budget in video recording,
the alignment confidence is usually lower, and we have to be
more conservative because of anticipation of alignment er-
rors. Therefore, we propose a new interpolator that also de-
pends on the noise variance and the difference between pixel
values, but has a sigmoid shape instead:
Ia(p) = (1 + exp~ (Fa®I=m))-1 7)
m(p) = 1+ Cridare - (1 — expfnl(P)-Cim-se)7)
where m is the middle point (i.e., interpolating factor is 0.5
when |£4 (p)| = m(p)), Criddie defines the boundary for
the bending (middle) point, and C! are appropriate noise

noise

scaling constants for different pyramid levels.

IWiener =

The values of Zyy;ener and Za for different noise levels and
absolute pixel differences can be seen in Fig. 2. Even with low
noise levels and high pixel differences, Zyy;ener still allows
the previous pixel to contribute significantly to the result, and
leads to ghosting or over-smoothing artifacts.

On the other hand, Zx has a sharp phase transition. It applies
stronger denoising in higher noise levels by allowing the in-
terpolation factor to be near O for a wider range of values than

Fig. 3: Comparison of different interpolators. Background:
original noisy frame. Zoom-in: original block (left), denoised
with Wiener filter (center), denoised with proposed sigmoid
interpolator (right).

Twiener- However, even for very high noise levels, large pixel
differences mostly occur due to wrong alignment as opposed
to noise, and Za quickly blocks the contributions from the
previous frame to avoid artifacts. Fig. 3 clearly shows how
the proposed Z better suppresses the artifacts compared to
TIwiener, While maintaining the same denoising level in the
rest of the frame.

After all the Laplacian pyramid layers {£.} have been de-
noised, we simply collapse them into the output frame, and
store them as {Ei,} of the next frame.

3.3. Implementation Details

We implement our algorithm with CPU/GPU co-processing
and test it on both the desktop and the Google Pixel 2, which
uses Qualcomm Snapdragon 835. We implement OpenGLES
shaders for the pyramid creation and merge on GPU, and im-
plement alignment and noise estimation on CPU using Halide
[17]. While the CPU-only implementation can still achieve
real-time throughput, our joint CPU/GPU solution greatly re-
duces the power consumption (—66%). We find that the exist-
ing spatial denoiser is effective enough for chroma channels,
and only enable our algorithm on the luma channel.

3.3.1. Noise Estimation

Real noise characteristics vary with both sensor and scene
properties [18], and proper noise modeling is critical for de-
noising performance [13]. We model the noise variance by
supplying a noise map n'(p) at every layer for each pixel.

In our target platform, we use controlled lighting and cam-
era settings to calibrate the sensor noise and determine how
the image processing stages (lens shading correction, white
balance, color space conversion, tone mapping, gamma cor-
rection etc.) transform the image and the noise variance. At
capture time, we use the available auxiliary information about
camera settings, and inverse transform the coarsest layer of
G9 back to the raw sensor domain, and transform the sensor
noise to obtain n'(p).

Fig. 4: Static test scene, with the ROI marked in red.

Method PSNR | Temporal var. Runtime (s)
Source 37.02 13.10 -
3DWEF [11, 12] | 40.56 5.66 0.25 (desktop)
VBM3D [5] 45.92 1.40 5.40 (desktop)
HDR+ [13] 39.79 6.83 0.15 (Pixel 2)
Proposed 43.71 2.55 0.018 (Pixel 2)

Table 1: Mean PSNR (dB) and temporal variance within the
ROI, and processing time per-frame of denoising methods.

Mobile Phone Texture | Noise | Overall
Google Pixel 2 57 80 96
Huawei Mate 10 Pro 48 77 91
Apple iPhone X 51 66 89
Galaxy Note 8 47 73 84

Table 2: DxOMark scores related to video denoising among
2017 top performers (higher is better).

4. RESULTS

Comparing our method to state-of-the-art is yet another chal-
lenge. We have developed an algorithm which was deployed
in a mobile commercial product, and therefore its perfor-
mance compared to the academic solutions may fall short due
to the very strict computational, power, and memory budgets.
On the other hand, other commercial solutions are available
to us only in their final systems form, i.e., we cannot perform
the standard testing by supplying the exact same input to
various algorithms and evaluating the results. Therefore we
present various set-ups: lab tests, real-world evaluation, as
well as a commercial benchmarking protocol.

For the lab experiment, we recorded a short video (74 frames,
1080p resolution) on a tripod containing a static scene of a
colored checkerboard and used the temporal average of all
frames as the ground truth. In addition to our own, we ap-
plied three representative temporal denoising algorithms to
this video: VBM3D [5], 3DWF [11, 12], and HDR+ [13]. In
Table 1, we list the runtime along with the mean PSNR and
the temporal variance of a flat region highlighted in Fig. 4.
Among evaluated algorithms, VBM3D achieves best qual-
ity, but it takes several seconds to process one frame using
a powerful desktop CPU (Intel Xeon ES in HP z840 worksta-
tion). The proposed method is orders of magnitude faster and
achieves sustainable real-time performance on Google Pixel
2 with one thread (Qualcomm Snapdragon 835). Also, our
method achieves competitive results both for PSNR and tem-
poral variance.

Fig. 5 shows real world samples of low-light videos recorded

(a) Night

(b) Person

(c) Stair

Fig. 5: Field videos taken by Google Pixel 2. In each frame
the video denoising is disabled at the right half part, and the
middle/right columns are the zoom-in around vertical center.
(Best reviewed in the electronic version.)

by Pixel 2. Note that these are much more challenging than
normal lab tests: the phone is handheld without tripod, the
scenes can include moving objects, and the lighting condi-
tions may vary. The proposed method can greatly reduce
noise in all these conditions without affecting details.

Finally, we list the public DxO benchmark results in Table 2.
The DxO Lab performs both lab and field tests in different
scenes (charts, natural objects, selfies, group shots...) and un-
der different lighting conditions (walking, panning, outdoors,
indoors, very low light conditions, high dynamic range...) and
combines several subjective and objective metrics into a re-
port [19, 1]. It is the most popular benchmark for phone
camera quality assessment. We can see that Pixel 2 achieves
the highest video noise score and preserves more texture than
other phones, which all have their own proprietary spatial and
temporal denoising solutions. The overall video score is the
highest among all premium 2017 smartphones.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

(13]

5. REFERENCES

“DxOMark
and

mobile
scores,”’

test protocol
www . dxomark.com/

dxomark-mobile-testing-protocol-scores/,

Accessed: 2018-01-18.

M. Mahmoudi and G. Sapiro, “Fast image and video de-
noising via nonlocal means of similar neighborhoods,”
IEEE Signal Processing Letters, vol. 12, no. 12, pp.
839-842, 2005.

E. P. Bennett and L. McMillan, “Video enhancement
using per-pixel virtual exposures,” in ACM TOG, 2005,
vol. 24, pp. 845-852.

H. Malm, M. Oskarsson, E. Warrant, P. Clarberg, J. Has-
selgren, and C. Lejdfors, “Adaptive enhancement and
noise reduction in very low light-level video,” in ICCV,
2007.

K. Dabov, A. Foi, and K. Egiazarian, “Video denoising
by sparse 3d transform-domain collaborative filtering,”
in 2007 15th European Signal Processing Conference,
2007, pp. 145-149.

M. Maggioni, G. Boracchi, A. Foi, and K. Egiazar-
ian, ‘“Video denoising, deblocking, and enhancement
through separable 4-D nonlocal spatiotemporal trans-
forms,” IEEE TIP, vol. 21, no. 9, pp. 3952-3966, 2012.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Im-
age denoising by sparse 3-D transform-domain collabo-
rative filtering,” IEEE TIP, vol. 16, no. 8, pp. 2080—
2095, 2007.

S. Yu, M. O. Ahmad, and M. Swamy, “Video denoising
using motion compensated 3-D wavelet transform with
integrated recursive temporal filtering,” IEEE TCSVT,
vol. 20, no. 6, pp. 780-791, 2010.

C. Liu and W. T. Freeman, “A high-quality video de-
noising algorithm based on reliable motion estimation,”
in ECCV, 2010, pp. 706-719.

A. Buades, J. L. Lisani, and M. Miladinovic, ‘“Patch-
based video denoising with optical flow estimation,”
IEEE TIP, vol. 25, no. 6, pp. 2573-2586, 2016.

A. Kokaram, “3D Wiener filtering for noise suppression
in motion picture sequences using overlapped process-
ing,” in Signal Processing V, Theories and Applications,
1994, pp. 1780-1783.

A. Kokaram, D. Kelly, H. Denman, and A. Crawford,
“Measuring noise correlation for improved video de-
noising,” in ICIP, 2012, pp. 1201-1204.

S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T.
Barron, F. Kainz, J. Chen, and M. Levoy, “Burst pho-
tography for high dynamic range and low-light imaging
on mobile cameras,” ACM TOG, vol. 35, pp. 192:1-
192:12, 2016.

[14]

[15]

[16]

[17]

(18]

[19]

T. Hachisuka, S. Ogaki, and H. W. Jensen, ‘“Progressive
photon mapping,” ACM TOG, vol. 27, no. 5, pp. 130:1-
130:8, 2008.

T. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast

optical flow using dense inverse search,” in ECCV,
2016, pp. 471-488.
V. Zlokolica, A. Pizurica, and W. Philips, “Wavelet-

domain video denoising based on reliability measures,”
IEEE TCSVT, vol. 16, no. 8§, pp. 993-1007, 2006.

J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Ama-
rasinghe, and F. Durand, “Decoupling algorithms from
schedules for easy optimization of image processing
pipelines,” ACM TOG, vol. 31, no. 4, pp. 32:1-32:12,
2012.

C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T.
Freeman, “Automatic estimation and removal of noise
from a single image,” IEEE TPAMI, vol. 30, no. 2, pp.
299-314, 2008.

F. Cao, F. Guichard, and H. Hornung, “Dead leaves
model for measuring texture quality on a digital cam-
era,” in Digital Photography, 2010, p. 75370.

